
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1991

Computed tomography: experimental data
acquisition and parallelization of reconstruction
algorithm
Richard K. Powell
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Computer Engineering Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Powell, Richard K., "Computed tomography: experimental data acquisition and parallelization of reconstruction algorithm" (1991).
Retrospective Theses and Dissertations. 246.
https://lib.dr.iastate.edu/rtd/246

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F246&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F246&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F246&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F246&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F246&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F246&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=lib.dr.iastate.edu%2Frtd%2F246&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/246?utm_source=lib.dr.iastate.edu%2Frtd%2F246&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Computed tomography: Experimental data acquisition

and parallelization of reconstruction algorithm

by

Richard Karl Powell

A Thesis Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

Department: Electrical Engineering and Computer Engineering

Major: Computer Engineering

Approved:

Iowa State University
Ames, Iowa

1991

Signature redacted for privacy

www.manaraa.com

ii

DEDICATION

To my parents who have taught, by example, the merits of a formal education and

who have instilled the worth of good values. I would especially like to dedicate this

thesis to the memory of my mother, who as both mother and teacher shared her

love, knowledge, and· dedication with many.

www.manaraa.com

iii

TABLE OF CONTENTS

DEDICATION ii

CHAPTER 1. INTRODUCTION 1

1.1 Need for NDE 1

1.2 Project Overview 2

1.3 Sample Images 11

CHAPTER 2. EQUIPMENT DESCRIPTION 21

2.1 Personal Computer 21

2.2 Multi-Channel Analyzer 21

2.3 Amplifier 28

2.4 Detectors 29

2.5 PC23 Indexer Board 32

2.6 Motor Drives 37

CHAPTER 3. PROGRAM DESCRIPTION 42

3.1 Program Purpose 42

3.2 Acqray.c Module 44

3.3 Moverf.c Module 54

3.4 Header Files 56

CHAPTER 4. CONNECTION MACHINE 58

4.1 Parallel Machine Architectures 58

4.2 Connection Machine Architecture 64

4.3 Connection Machine Implementation 68

www.manaraa.com

iv

CHAPTER 5. CONCLUSIONS 73

5.1 General Conclusions 73-

5.2 Future Work 75

BIBLIOGRAPHY 78

ACKNOWLEDGEMENTS 80

APPENDIX A. MCA COMMANDS 81

APPENDIX B. PC23 COMMANDS 83

APPENDIX C. OUTPUT FILE FORMATS 86

APPENDIX D. MODULE LISTINGS 88

APPENDIX E. HEADER FILE LISTINGS 147

www.manaraa.com

v

LIST OF FIGURES

Figure 1. Setup for 1 D and 20 scans

Figure 2. Setup for tomo scan

Figure 3. 10 scan of resolution gauge

Figure 4. Sketch of resolution gauge

Figure 5. 20 scan of kogwheel

Figure 6. Sinogram of tomo scan of two cylinders

Figure 7. Reconstruction from tomo scan of two cylinders

Figure 8. Data acquisition system block diagram

Figure 9. Block diagram of 916A MCA

Figure 10. MCA memory map

Figure 11. Overview of program interface

Figure 12. Detector system (Ge detector)

Figure 13. Am241 isotope response of detectors

Figure 14. Flowchart of data acquisition program

Figure 15. High-level taxonomy of parallel computer architectures

Figure 16. Connection Machine organization

Figure 17. Filter program wrapp~d image array diagram

3

6

12

14

16

18

20

22

23

26

27

30

33

43

60

66

71

www.manaraa.com

vi

LIST OFT ABLES

Table 2-1. PC23 Control byte format

Table 2-2. PC23 Status byte format

Table 3-1. Initial.flags and their values

Table B-1. Motor resolution values to be used in the MR command

36

37

45

84

www.manaraa.com

CHAPTER 1. INTRODUCTION

1.1 Need for NDE

Non-destructive Evaluation of components is a need throughout much of the

manufacturing industry that involves high value parts. The aircraft companies are a

prime example of this· need. The fleet of commercial and military aircraft that is in

use worldwide today is aging and consequently it has become critical to develop an

economical real time inspection of aircraft components such as wing structures,

engine mounts, turbine blades, and various other critical components in modern

day aircraft. The materials used in aircraft structures vary substantially today,

indeed it is commonplace to see exotic composite materials as well as the more

conventional materials such as aluminum and titanium.

There are three primary methods used at the Center to do NDE inspections:

1. X-ray based, 2. Ultrasonics based, and 3. Eddy current based. Eddy currents are

widely used in industry for the determination of the existence of surface cracks and

their lengths in conductors. Ultrasonics is used extensively in the production and

in-service inspection of composite panels for problems such as delamination and for

cracks in metals. X-ray methods are used during production of composite based

materials and with portable generators, for in-service·detection of fatigue cracks. X

ray computed tomography image analysis of voids, cracks, and inclusions are

currently finding widespread usage in both the aircraft industry and in many other

industrial applications as well. Although each of these inspection types has its own

merits, it is basic research into some of the X-ray based methods that will be

discussed in this thesis.

www.manaraa.com

2

1.2 Project Overview

The project discussed in this thesis covers the specification of a computational

platform for a computer based NDE X-ray inspection research system, followed by

the installation of data acquisition and sample positioning equipment. It then

continues to include the writing and testing of software to control this hardware.

System capabilities- There are three types of scans done here at the Center,

a one dimensional scan (1 D scan), a two dimensional scan (20 scan), and a

tomographic scan (tomo scan). These three types of scans are to be done

automatically under computer control with user input of scan parameters. An

explanation of the X-ray lab setup will first be outlined, followed by explanations

of the these three scan types outlining the differences in sample positioning for each.

The setup here at the Center has a fixed position x-ray source, and a fixed

position photon detector in line with the pencil beam source (refer to Figure 1). In

between the source and the detector there is a sample positioner which can move

the sample through the pencil beam in several different directions along axes which

have been labeled as follows: two linear axes labelled, X for the horizontal axis, and

Z for the vertical axis. In addition to these two linear axes, there is one rotational

axis called theE> axis that is used for the tomographic scan. Further explanation of

each of these types of scans follows.

10 scan - The one dimensional scan is done on any of the available linear

axes. The present setup in the lab makes use of the X and Z linear axes (refer to

Figure 1). A 10 scan can be done along either of these axis in either the positive or

negative directions. The procedure is as follows: setup the sample to the desired

initial position, then acquire photon count data by setting at this position

www.manaraa.com

3

z

-X

Sample

Detector

X

-Z

Figure 1. Setup for 1 D scan and 20 scan

www.manaraa.com

4

for a given time interval counting photons, then move the sample one increment in

the desired direction and stop and count photons once again. This procedure is

repeated until a given total distance on the chosen axis is traversed. At the

conclusion of this data acquisition the sample would be returned to its original

starting position.

2D scan- The two dimensional scan is similar to the 1D scan with the

addition of one more linear axis so the scan is then done in a two dimensional plane

(the X-Z plane). As an example, assume a·2D scan along the X and Z axes is chosen

with the following parameters: a 2.0 inch total scan distance along both axes, an

increment of 0.01 inches also along both axes. This scan will then do the following:

referring to Figure 1, it would first do a 1 D scan along the X axis, it then would

move the sample one increment in the vertical Z axis direction and again do the 1D

scan as before. This process would repeat until all of the 2D X-Z plane points have

been traversed and photon counts have been acquired at each of these points. This

would yield a total of 200 x 200 = 40,000 moves and 201 x 201 = 40,401 photon

counts. The large number of counts that are acquired leads to rather large file space

requirements as well as program memory considerations. Using this example, there

is currently 10 bytes per count in the ASCII GRD output file format (see Appendix C

for an explanation of the GRD format), so 10 x 40,401 counts= 404,010 bytes (almost

half a megabyte in just one output file). These files can be stored in a binary GRD

file representation which dramatically reduces their size (i.e. binary file size is

approx. 8% of the ASCII file size). The binary format is not currently used because

it is frequently desirable to make changes to these files and this is easily done using

a text editor if the file is an ASCII file.

www.manaraa.com

5

Torno scan- The motion control for the tomo scan is similar to that of the 2D

scan with the exception that one rotational axis is used instead of one of the linear

axes. This is an implementation of a first generation tomography scan. Referring to

Figure 2, it can be seen that the two axes used presently are the X and e axes. This

scan is done identically to the 2D scan example above, except that the 'outer' scan

axis is now the rotational axis. It is common to sweep thee axis through a total of

180 degrees in order to yield a complete set of projection data. This is done to

enable data to be taken by a point detector in a first generation computed

tomography (CT) scan for CT image analysis. The interested reader is referred to

references [1] and [2] for a detailed description of computed tomography and the

corresponding theory of image reconstruction from tomographic projections.

General acquisition system needs - The first priority in selecting equipment

for this type of acquisition system is to determine exactly what data is to be

acquired. The types of equipment needed in a computer based data acquisition

system include: a computer, data acquisition equipment (to process raw analog data

and put it into digital form), detector (sensing) equipment, and sample positioning

system. The data acquisition and positioner equipment must both interface with the

. computer. The control program needs to detect or sense the occurrence of the

events being acquired. Finally, the data must be stored and, as required, processed.

Detectors - A photon detector must be chosen and then connected through

i~ electronics to provide an analog signal representing X-ray photon counts. These

analog signals then interface to the computer thro4gh data analyzers (containing

analog to digital conversion and control logic). There are two types of data

analyzers available at the Center, a single-channel analyzer (SCA), and a multi

channel analyzer (MCA). The basic difference is that the multi-channel analyzer is

www.manaraa.com

6

z

Detector

X

-Z

Figure 2. Setup for tomo scan

www.manaraa.com

7

capable of acquiring multiple bin energy sensitive photon counts where the single

channel analyzer is an integration of photons of all energies within a single energy

bin. The MCA is a two slot ISA compatible board that is installed in the computer

and communicates via software written by the programmer. Details of this

communication are included in Chapter 3.

Sample positioner- The sample positioner consists of a single ISA

compatible board that is installed in the computer connected to a microprocessor

based motor controller, which is then connected to the motor drivers. Each board

controls three axes. Communication between the computer and this board is the

responsibility of the programmer. This communication scheme is described in

detail in Chapter 3.

Computer- The computer used for this system must be IBM compatible with

an industry standard ISA compatible bus. The computer currently used at the

Center for this system is a 20 MHz 80386 based IBM compatible personal computer

with a 320 Meg. hard disk, 4 Meg. of RAM, and both 3.5" and 5.25" diskette drives.

There are interface issues that arise when installing the sample positioner and MCA

boards within this computer. These issues will next be addressed.

Interface issues- The physical installation of the positioner and data

acquisition boards within the computer presents interfacing problems in trying to

get them to coexist with other boards already installed in the system (i.e. an ethemet

board, a Mach 2 tape controller board, the video board, disk controller board, and

the mouse).

Problems seen in this installation were all related to interrupt request (Irq)

and PC 1/0 bus address conflicts. There are a limited number of Irq lines in an IBM

AT compatible machine and some peripherals such as the mouse must use specific

www.manaraa.com

8

ones. The installation process is a matter of shuffling around the Irq and bus

addresses used by the positioner controller and data acquisition boards so that

address or Irq conflicts with other peripherals are avoided. Both of these boards

have user selectable Irq and bus address switches. This type of problem is seen only

when there are numerous peripherals installed.

Another interface issue involves the need to interface this PC to a DEC

workstation network through an ethernet board. The interface has the same

potential conflict problems, but the most troublesome problem was with the

network driver software for the PC. In interfacing this PC the Apollo network, and

then later to a DEC network, the primary problem was this software was so new

that the bugs were yet to be worked out. One of the problems that arose in the use

of this network interface, was in the way that ASCII file transfers are handled. The

Apollo software took the approach that in would automatically convert the DOS

<CR> <LF> pairs to just <CR> (the Apollos and DECs use only the <CR> for line

terminations). However, the DEC software takes the approach that it does not

interfere with any file that is transferred. Therefore, it is the responsibility of the

person transferring the ASCII files to/from the DEC to run a filter program to

convert to the proper line termination format for the target machine. This type of

problem became apparent when transferring FORTRAN and C source code from

one machine type to the other. The code that was fine on one machine would blow

up with syntax error messages on the target machine. The problem was the DEC

and Apollo workstations treated the extra <LF> character as a syntax error.

Interfacing to the tape controller board (installed to allow high speed tape

archiving of image files) is another case of the confli.ct issue. The installation again

involves the careful selection of Irq and bus addresses such that no conflicts occur.

www.manaraa.com

9

This project also involved looking into interfacing an existing single channel

analyzer through a Tennelec buffer interface for scans that do not need the multi-bin

energy sensitive abilities of a multi-channel analyzer. The buffer interface is

designed to communicate with a host computer through a RS232 serial port. This

requires that an interrupt service routine (ISR) be written to process the serial port

data. The best to way to write an ISR such that it would coexist with our operating

environments (DesqView's multitasking system) was explored. This particular part

of the project was postponed in order to implement the new and more flexible

multi-channel interface. The need to use the buffer interface and consequently the

serial port interface can be avoided by interfacing the single channel analyzer

amplifier directly to a Counter/Timer board installed in the computer bus.

Code implementation- After successful hardware installation, the software

needed to control this system in the scan types described had to be written. The

language chosen was C for a number of reasons, including the ability of the C

language to directly manipulate hardware registers, to do bit manipulations, and its

powerful pointer capabilities. Neither FORTRAN or Pascal allow the programmer

to get as close to the hardware as does C. This ability is very important in

controlling these types of boards. Also, FORTRAN has no pointer capability and

Pascal's pointers are not as powerful as those of C. It should be pointed out, though,

that either FORTRAN or Pascal could be used to write these interface programs. In

fact, there was good direct support for FORTRAN code provided by the board

manufacturers. However, C was the language of choice and lent itself well to the

task. A detailed description of the program modules that handle the

communication and control of this system is included in Chapter 3.

www.manaraa.com

10

An additional issue encountered in the implementation of the code involved

interfacing the original working version of this program to text based menuing user

interface code. This took considerable time, as it lead to significant changes in the

code and to the introduction of numerous bugs.

Code testing- There were several types of testing that needed to be done to

verify the code. The first and most important was to verify that the sample

positioning was working properly. This involved placing absolute position markers

on the positioner platforms in order to monitor the positions actually moved.

Through this type of testing code problems were found. These are discussed further

in Chapter 5. Additional testing involved doing example various scans of the

different types and then analyzing the output data.

Data storage- As noted earlier, the volume of data generated by the various

scan types is large, thus driving the need for archival storage of this data. Several

data backup methods were evaluated over the course of this project. These methods

included floppy disks with compressed files, however this method became less and

less feasible as the volume of files became too large.

We were able to initially get around the purchase of additional hardware for

this backup by using the ethernet cards that have been installed in our personal

computers. We tied into the Apollo network of workstations to backup our files

onto the larger hard disks there. These directories of PC files would then be backed

up to tape by the Apollo network administrators.

Eventually, it became desirable to obtain ou~ own tape backup system. The

author was involved in shopping for, purchasing, and then installing a tape backup

unit. An external unit was chosen so it could be used by any of our PCs. We also

purchased the Mach 2 tape controller board to increase throughput in our backups.

www.manaraa.com

11

The unit purchased and now used is the Mountain Network Systems' Filesafe 8000.

Each mini-cartridge will hold 15~ MBytes in standard mode and they are capable of

holding 304 MBytes per cartridge in compressed mode. A throughput of

approximately 6 MBytes/min is realized.

Data analysis- Another task undertaken in this project was to look into the

possibility of using a massively parallel computer to aid in speeding up the

tomographic reconstruction and image processing algorithms used by our group at

the Center. These algorithms are very compute intensive. It was therefore hoped

that a machine such as the Connection Machine (built by Thinking Machines, Inc.)

would provide a dramatic speedup for these algorithms. As both a test of its

abilities and a test of the programming effort required to convert a serial program

into a parallel program to run, a considerable amount of time was spent looking

into implementing an image processing filter program on the Connection Machine

(CM). Further issues involved in parallel processing, additional details of the

Connection Machine architecture, and additional information on the filter algorithm

can be found in chapter 4 of this thesis.

1.3 Sample Images

Figures 3, 5, 6, and 7 are examples of the data analysis output that is used

here at the Center for each of the 3 scan types. Figure 3 is a graph of photon counts

versus position for a lD scan of a resolution gauge used in determining the

resolution of a particular image setup (see Figure 4 for a sketch of a resolution

gauge). The low portions of the graph immediately after theY axis (left side of

graph) and at the far right of the graph are the photon counts seen through the

metal of the sides of the gauge. The high spot in between with bumps show the

www.manaraa.com

rn
.+-)

~
:;j
0

t.)

20000

15000

~ 10000
0
~
0
~
~

5000

1-D Line Scan
resolution 45 microns

0 I

0.070 0.075 0.080 0.085 0.090 0.095 0.100
Detector Position in em.

Figure 3. 10 scan of resolution gauge

-N

www.manaraa.com

Figure 4. Picture of resolution gauge.

www.manaraa.com

www.manaraa.com

15

photon intensity fluctuations from moving across the gauge openings. First the

metal of the gauge is crossed, then back to open air as the beam passes an opening

in the gauge and this repeats until the gauge has been traversed and once again the

beam is back into the solid gauge portion. This allows us to see the size of a void or

crack that can be distinguished with this setup.

Figure 5 is a contour plot of a 20 scan of a kogwheel. It is a top view of the

resultant topology in the scanned region of this kogwheel. A couple of the

kogwheel teeth are readily visible (towards the upper right corner and in the

middle of the left side) and help orient the plot. A flaw in the kogwheel is also

visible. The circular shaped contour lines packed closely together gives rise to the

existence of a flaw in the kogwheel.

Figure 6 is a graph of the output data taken with a tomo scan (this type of

direct graph of the raw output data is called a sinogram). The sample consisted of

two aluminum cylinders that contain drilled holes of various sizes and depths.

Figure 7 is the resultant tomographic reconstruction image that shows the slice

taken through these two cylinders. The slice was chosen to cut through all of the

drilled holes and as shown in the reconstructed image (Figure 7), these holes are

visible. This technique is powerful and can be used to greatly enhance the ability to

locate a void, crack, or inclusion because it yields three dimensional information as

to its location.

Chapter 5 contains some conclusions including comments about testing of

this software, and recommendations as to what be could be done to improve on the

system.

www.manaraa.com

16

20 scan of kogwheel

X axis position
0.00 0.02 0.04 0.05 0.07 0.09 0. 11 0.1 3 o. 14 0.16 0.18 0.20 0.22 0.23 0.25 0.27 0.29

0.29

0.27

0.25

0.23

0.22

0.20

c 0.18
0

:;:; 0.16 ·a;
8_o.14

.~ 0.13
X
0

0.11
N

0.09

0.07

0.05

0.04

0.02

0.00
0.00 0.02 0.04 0.05 0.07 0.09 0.11 0.13 0.14 0.16 0.18 0.20 0.22 0.23 0.25 0.27 0.29

Figure 5. 2D scan of kogwheel, interior void is visible

0.29

0.27

0.25

0.23

0.22

0.20

0.18 c
0

0.16 :;:;
·a;

0.14 0
a.

0.13 .~
X
0

0.11
N

0.09

0.07

0.05

0.04

0.02

0.00

www.manaraa.com

Figure 6. Sinogram of tomo scan of two cylinders

www.manaraa.com

www.manaraa.com

Figure 7. Reconstruction of tomo scan of two cylinders

www.manaraa.com

www.manaraa.com

21

CHAPTER 2. EQUIPMENT DESCRIPTION

This chapter will describe the equipment used in the Computed Tomography

data acquisition system. Referring to Figure 8, the main components of this data

acquisition system are: a personal computer, a multi-channel analyzer, a photon

detector, and a sample positioner. The following sections describe each of these

main components in detail.

2.1 Personal Computer

The personal computer currently used in this system is a 20 MHz 80386 based

IBM compatible computer with a 320 Megabyte hard disk, 4 Megabytes of RAM, a

VGA plus color video board and monitor, and a standard ISA AT compatible bus.

The only requirement for the personal computer to use with this data acquisition

hardware and program, is that it must be an IBM compatible PC and must have an

ISA AT compatible bus addressing sc~eme. It must however, have at least three

free full size slots in order to physically house the PC23 board (which takes one slot)

and the MCA board (takes two slots).

2.2 Multi-Channel Analyzer

The multi-channel analyzer used in this system is an EG&G Ortec Model

916A MCB. A block diagram of this MCA is shown in Figure 9. The 916A MCA

consists of an analog to digital converter (ADC), a ZSOA microprocessor, program

memory, and data memory. The converter is a successive approximation ADC with

2048 channels. A successive approximation ADC is. a converter which successively

'guesses' at the digital representation of the sample and hold circuit's analog voltage

www.manaraa.com

Personal
Computer

22

X axis

Zaxis

High Voltage. _ _. .. ~
forGe detector

,.--

X-ray
Source

Sample
Positioner

Figure 8. Data acquisition system block diagram

www.manaraa.com

23

Dual-Port

Data Memory

24 bit

Program Memory

ADC ZBOA
8-bitwords

~ - - - 24KROM - - -
6KRAM

Figure 9. Block diagram of 916A ·MCA

www.manaraa.com

24

until the binary representation of that voltage has been determined within a given

quantization error. This techniql)e successively moves to its best guess

representation of this analog voltage by improving its guess on each approximation

interval based on a comparison of the new guess to the known input voltage. There

is more involved in this ADC technique which is outside the scope of this thesis.

However, interested readers are referred to a digital integrated electronics book for

more basic information on this ADC technique such as [3].

The program memory consists of 24K 8-bit words of ROM (read only

memory) and 6K 8-bit words of RAM (random access memory). The dual-ported

data memory consists of 2048 channels each of which can hold a maximum of 223 - 1

counts. This dual-ported memory allows the entire spectrum to be transferred from

the card memory to the PC memory in milliseconds, thereby allowing real time

snapshots of the data to be taken and processed. The specifications for this MCA

board are as follows:

PULSE HEIGHT ANALYSIS Successive approximation ADC with 2K channel

resolution.

DEAD TIME PER EVENT 15 microseconds, fixed.

MEMORY 2048-channel memory. Conversion gain, software selectable as 512,1024,

or 2048 channels.

INTEGRAL NON-LINEARITY< +or- 0.05% over 99% dynamic range.

DIFFERENTIAL NON-LINEARITY< +or- 1% over top 99% dynamic range.

INSTABIUTY Gain < 50 ppm/ degree C.

MAXIMUM COUNTS PER CHANNEL 223- 1 (23 bit data values).

REGION OF INTEREST (ROI) One flag bit per channel.

PRESETS

Real Time/Live Time In multiples of 20 ms.

Region of Interest Peak count.

Region of Interest Integral count.

www.manaraa.com

25

Data Overflow Terminates acquisition when data in any channel

exceed -1 counts.

ENVIRONMENTAL REQUIREMENTS

Temperature -15 degrees Centigrade to 30 degrees Centigrade.

Relative Humidity- 20% to 80%.

A programmer's model for this MCA data acquisition board will next be

described. The default location of the dual port memory in the IBM PC bus address

scheme is DOOOOh (pageD of the PC's memory). This address may be used to set up

a pointer to the first data memory location on this board. The output 1/0 port

address is selectable using a jumper on the board and is set to 292h for the default

address. This port address is used by the programmer to select one of 8 possible

MCA boards (numbered 1-8). In order to select MCA number 1, you must write a

zero (MCA# -1) to this 1/0 port address. This extra port address is needed to

select any of the possible 8 MCA boards that may be in the same PC (the dual port

memory address would remain the same for each board, so only the port address is

used to uniquely identify each board). Our setup has two MCA boards available,

though at present only one is used.

The way the 916A was designed, the count data are contained in the lower

three bytes of each double word beginning at the data memory starting ~ddress

(default= DOOOOh). Bits 0 -22 are the count data and bit 23 is the region of interest

(ROI) bit. This bit can be used to set up a region within the spectrum that you are

interested in, ignoring the channels outside the ROI. The high byte (bits 24 -32)

contents are undefined. Refer to Figure 10 for a memory map of the dual port

memory and to Figure 11 for an overview of the PC's memory map and a

description showing the physical location of the MCA pointer and 1/0 port

addresses.

www.manaraa.com

00000000

00000038

D000003C

00000040

D00007CO

D00007F8

D00007FC

00000800

0

26

Bits 0- 22 are Count Data
Bit 23 s the ROI flag bit
Bits 24 - 31 are as shown

7 8 1516 23 24 31

Output flag

Output
Length LO

Output
Lengthffi

Output Buffer
Stan

~
1
g'
~ ..

Input flag

Input
Length LO

Input
Lengthffi

Input Buffer
Start

5' .,
c: -= ~
;' ...

Figure 10. MCA memory map

00000003

00000038

D000003F

00000043

D00007C3

D00007FB

D00007FF

00000803

www.manaraa.com

Extended Memory

lOCOOOh~----------~
FFFFFh
EOOOOh

[X)()() OOOOh
COOOOh

AOOOOh

00500h

00400h

OCOOOh

ROM BIOS

Installable ROM

Video Buffers

Transient portion
of DOS

Transient Program
Area

Resident Portion
of DOS

Data area for BIOS
and BASIC

Data area for BIOS

Interrupt Vectors

27

BIOS

MCA bd. pointer

Video Boards

Device drivers

Code and
Data

Operating
System

I/O bus
addresses

Source

li\

Detector

Figure 11. Overview of program interface including PC memory map,
shows the location of the MCA base pointer = 0000 OOOOh and
the 1/0 bus address locations for referencing the 1/0 ports

www.manaraa.com

28

Communications between the IBM PC and the MCA board uses a message

passing mailbox scheme. The addresses used for the MCA to IBM PC mailbox are:

0803h for the message.

07FBh for the length.

07C3h for the flag.

The mailbox operation is as follows. A message to the MCA is placed at

address 043h, pageD (address DOOO 0043h), and at every fourth byte until the

message has been completed (including the <CR> or <LF>). The length of the

message is placed at 03Bh, pageD, and a FFh byte is written to 03, pageD signalling

the MCA that a message is ready. When the MCA accepts this message, the location

03h, pageD is set to OOh signalling to the PC that the message has been accepted. In

order to read a reply from the MCA, read location 07C3h, pageD, until a value

other than zero appears; then read location 07FBh for the length, in bytes, of the

message. Read the message beginning in location 0803h, pageD, and continuing for

~very fourth byte for the specified length. After the message has been received, the

flag at 07C3h, page D, must be set to zero. A list of the commands that the MCA

board understands and responds to as well as their syntax can be found in

Appendix A.

2.3 Amplifier

The amplifier used in this system is an EG&G Qrtec Model 671 high

performance energy spectroscopy amplifier. This amplifier accepts bipolar signals

from a detector preamplifier and provides a positive 0 to 10 volt output signal

suitable for use with single-channel or m1:1lti-channel pulse height analyzers. The

www.manaraa.com

29

gain is continuously variable from 2.5 to 1500. There is no capability for computer

control of the amplifier so I will briefly outline it's specifications, but not go into

additional detail on this component. The 671 amplifier has the following

specifications:

GAIN RANGE Continuously adjustable form 2.5 to 1500.

INTEGRAL NON-LINEARITY (UNI output)<+ or- 0.025% from 0 to+ lOV.

NOISE Equivalent input noise< 5.0 microvolts rms for gains< 100, and< 4.5

microvolts for gains< 100.

TEMPERATURE COEFFICIENTS (0 to 50 degrees C):

Unipolar Output < +or - 0.005% per degree C for gain, and 7.5 microvolts per

degree C for the DC level.

Bipolar Output .<+or- 0.0075/degree C for gain, and<+ or- 30 microvolts per

degree C for the DC level.

OVERLOAD RECOVERY Unipolar and bipolar outputs recover to within 2% of the

rated output from a xlOOO overload in 2.5 non-overloaded pulse widths using

maximum gain.

2.4 Detectors

There are two different type of detectors used in the computed tomography

work here at the Center. The first is a Nai(Tl) scintillation detector and the second is

a germanium semiconductor detector. Both of these detectors are collimated with

lead shielding so that only a 0.6mm diameter pinhol~ is exposed to the detector

itself. These therefore fall into the category of point detectors -(i.e. they only detect

photons that are excited by the X-ray beam striking the detector at a single point). A

close up diagram of the detector is included in Figure 12. In this Figure it shown

that these detectors are composed of a detector element and a preamplifier (the Ge

detector also has the high voltage filter within this detector system as shown in the

diagram).

www.manaraa.com

30

• Radiation Source

I \
_pe~tor Syste~ ,- ---- Input

Main Detector Pre-Amplifier Amplifier

Output

High
Voltage
Filter

----- -1

High Voltage
Bias Supply 0 - SkV Output

Figure 12. Detector System (Ge detector)

www.manaraa.com

31

The Ge semiconductor element is composed of a single germanium or silicon

crystal that has been made into a diode capable of withstanding high reverse bias

voltage at cryogenic temperatures. Under these temperature conditions, electron

hole pairs produced by the absorption of an x-ray or gamma-ray photon are swept

to opposite contacts by an electric field. The resulting induced current pulse is

integrated by a charge-sensitive preamplifier producing an output voltage pulse

with height proportional to the incident photon energy [4]. It is this preamplifier

voltage pulse that is hooked to the input of the 671 amplifier when the Ge detector is

in use.

The scintillator detector used here at the Center is aNal crystal based

detector. The Nal detector makes use of the ability of a large group of crystal lattice

structures to respond to a radiation source by emitting scintillation light. These Nal

crystals when laced with a small amount of impurity (thallium iodide), produce an

exceptionally large scintillation light 9utput when exposed to a radiation beam.

This scintillation light must be then converted to an electrical signal which may then

be amplified and counted. Photomultiplier tubes are used to convert the relatively

weak light output of a scintillation pulse into a usable current pulse without adding

large amount of random noise to the signal. The two major elements to a

photomultiplier are a photosensitive layer, called the photocathode which is

coupled to an electron multiplier structure. The photocathode converts as many of

the incident light photons as possible into low-energy electrons. The photoelectrons

produced will be a pulse of similar time duration to the original scintillation light

pulse. However, becaUse only a few hundred pho~oelectrons may be involved in a

typical pulse their charge is too small at this point to serve as a convenient electrical

www.manaraa.com

32

signal. It is the electron multiplier section in the photon multiplier tube that serves

as an electron amplifier to greatly increase the number of photoelectrons. After

amplification through this multiplication section, a typical scintillation pulse will

give rise to 107-1010 electrons which is sufficient to serve as the charge signal

representing the original scintillation event.

These two detector types have different sensitivities in that the Ge detector is

considerably more energy sensitive than is the Nal detector. Therefore, the Ge

detector is able to resolve distinct energies better than the Nal. This fact is easily

demonstrated by looking at the response of the two detectors to an isotope source

that emits mono-energetic photons of known energies. Figure 13 is a graph of the

Ge and Nal detector responses to an Am241 isotope. Referring to this Figure it is

apparent that the Ge detector can distinguish four distinct energies in this energy

window. By comparison, it is not at all apparent that there are four distinct energies

present when looking at the Nal detector response.

The trade off when using the Ge detector for better sensitivity, is that it is less

efficient and costs considerably more. The Ge detector must also be kept at liquid

nitrogen temperatures when in use. Therefore, it is more costly and troublesome to

use as well. If the user is not concerned about doing energy sensitive scans, then it

is best to use the Nal detector, whereas if energy sensitivity is important, then the

Ge detector must be used.

2.5 PC23 Indexer Board

The Compumotor PC23 is a microprocessor based indexer that is designed

and built as an add in board for the IBM personal computer ISA AT bus. This board

resides in the personal computer and along with the MC5300 motor controller sends

pulses to the motor drivers to control the stepper motors in the sample positioning

www.manaraa.com

100000

80000

(J)
+-'

60000 c
::::l

-t 0
u
c
0 400001 +-'
0

...c
Q_

20000

l
j

0
0.00

Am
241

1SOTOPE RESPONSE COMPARISON

ft Ge detector

II II

II 1'1 ~ ~

~/\~-H"--
10.00 20.00 30.00

Live time count = 100 sees.
Amplifier gain for Ge = 50
Amplifier gain for Nal = 200

detector

40.00 50.00

Photon Energy in KeV

Figure 13. Am 241 isotope response of detectors

w
w

www.manaraa.com

34

system in precise positioning movements (refer to Figure 8). The board is another 1/0

addressable port as far as the PC is concerned. A structure can be set up to point to the

various control and status registers that reside on the board. Once this has been done, it is

possible to send motor commands as sequences of ASCII characters to the board and to

monitor status signals in order to know what the positioner is doing or has done. A more

detailed explanation of the PC23 will now be presented.

Operation of the PC23 is independent of the programming language used to

control it. The programmer only need have the means to read from and write to

the 1/0 bus of the computer. This ability to read and write from and to the 1/0 bus

is available in most languages in some form of the Intel assembly language IN and

OUT statements. These instructions allow the programmer to send a byte to an 1/0

bus address (IN) and to receive a byte from an 1/0 bus address (OUT). The actual

name of the functions used to accomplish this communication is language and

compiler dependent (example: for Turbo C++, the 1/0 port communication function

names are inportb and outportb).

In order for the computer to control the PC23, it must know where to write

instructions and to read responses. This requires that the PC23 have an 1/0 bus

address that the PC can access. The PC23 occupies four addresses on the 1/0 bus.

The base address is selected on the board itself by setting switches to the

appropriate positions. The reader is referred to pages 7 and 8 of [5] for more

information on setting this address.

Only two of these four address are significant: one for CONTROL and one

for DATA, Input and Output operations each use the same address (the other two

addresses are duplicates of these two). The DATA address is equal to the base

www.manaraa.com

35

address of the board set by the switches on the board (default= 300h). The

CONTROL address is equal to the base address + 1 (default = 301h).

The PC23 control portion of the program reads from and writes to registers at

the base address of the board plus one (default = 301h). This transfer takes place

one character at a time. During each character transfer, the program writes control

bytes and reads status bytes from registers at this address.

The Control Byte (CB) and Status Byte (SB) provide access to the PC23

operating conditions. The CB allows setting certain operation conditions and the SB

reports others. Each refers to an eight bit PC23 register that is accessible on the PC

1/0 bus, where each of the eight bits is a flag with a specific meaning. Control Byte

flags allow the host program to signal the PC23 with messages. The Status Byte

flags allow the program to check on the PC23 status such as checking to see if motor

Xis moving.

Signalling the PC23 involves setting (forcing to binary one) or clearing

(forcing to binary zero) control bits or flags. Clearing and resetting a bit means to

force it to a binary zero. Setting a bit means to force it to a binary one. All eight

Control register bits are forced to one state or the other when the computer writes to

the registers address.

Control Byte - Table 2-1 shows the Control Byte flags available to 'the

programmer for signalling the PC23. Immediately following the Table is a more

detailed explanation of each of the 8 bits.

Status Byte- The Status Byte (SB) provides information about the status of

the PC23 indexer board. The information flags are there meanings are shown in

www.manaraa.com

Bit
0
1
2
3
4
5
6
7

36

Table 2-1. PC23 control byte format

Definition
Binary Input, active high (TD mode only)
Unused
Stop Watchdog Timer (active high pulse)
Acknowledge Interrupt (active high pulse)
IDB Command Character Ready (active high handshake)
Restart Watchdog Timer (active low pulse)
Reset Interrupt Output (active low pulse)
ODB Message Character Accepted (active high handshake)

Bit 0, when set indicates that the Binary Mode of data input for the TD mode
of contouring is under way.
Bit 2, when set, causes the PC23's watchdog timer to time out and stop.
When the timer stops, it forces a hardware reset. The reset condition may be
cleared by cycling power or restarting the timer. See bit 5 for more info.
Bit 3, when set, tells the PC23 that its interrupt signal to the computer has
been noted and is no longer needed. See bit 6 for more info.
Bit 4, when set, tells the indexer that a command character has been put into
the Input Data Buffer (IDB). The indexer then clears bit 4 of the SB to
indicate that the IDB is unavailable, reads the character in the IDB, and then
sets bit 4 of the SB to indicate to the host that the IDB is again ready for a new
character.
Bit 5 restarts the watchdog timer. It must first be cleared, then the timer will
start up when the bit is set again. This bit should never be toggled unless the
timer has timed out.
Bit 6 resets the hardware interrupt latch and thus the interrupt output. The
interrupt output cannot be reset unless the interrupt.is first acknowledged
with bit 3 above. These bits should be cleared during reset or interrupt
acknowledge.
Bit 7, when set, tells the indexer that a response character previously placed
in the Output Data Buffer (ODB) by the indexer has been received by the
host. A new character may then be placed in the ODB. ·

www.manaraa.com

37

Table 2-2. The status byte performs two functions; to assist in the communications

process, and to provide run-time status information without the need to burden the

indexer with routine status request commands.

Reading and Writing Motion control commands and responses are transferred via

the Input Data Buffer (IDB) and the Output Data Buffer (ODB) at the PC23 base

Table 2-2. PC23 status byte format

Bit Definition Power-Up State
0 Axis 1 Stopped. Set
1 Axis 2 Stopped. Set
2 Axis 3 Stopped. Set
3 ODBReady. Cleared
4 IDBReady. Set
5 Board Fail. Cleared
6 Interrupt Active. Cleared
7 (Reserved) Cleared

Bits 0, 1, and 2 indicate whether the motors for the three axes are moving. At
the beginning of any move, the appropriate bit is cleared. Specifically, these
bits indicate whether or not the indexer is sending step pulses to the motor
drives.
Bits 3 and 4 are set when their corresponding data.buffer is ready: Bit 3 is set
when the Output Data Buffer (ODB) contains an output character for the
host, signalling the host to read the information it contains; Bit 4 is set when
the Input Data Buffer (IDB) is ready, telling the computer it may write a
character to the IDB.
Bit 5, when set, tells the PC that the watchdog timer of the PC23 has timed
out, possibly indicating an internal failure from which it cannot recover. The
only way to clear this bit is to reset the indexer. Exercising the self-test
function will also set this bit. In this condition, the motor shutdown output
will go on, removing motor torque, and generating an apparent drive fault.
Bit 6 indicates to the host that a conditional interrupt has been armed and

. that the condition has occurred.· If either jumper JU1 or JU2 is installed, then
the PC23 has generated a hardware interrupt signal. For more information
see the interrupt section in [5].

www.manaraa.com

38

address (default= 300h). Interface control commands and status information are

transferred via the control byte (CB) and the status byte (SB) at address= base

address+ 1 byte (i.e. if base address= 300h, then the CB and SB address= 301h).

The ODB and the SB are read-only registers and the IDB and CB are write-only

registers.

Commands sent to the Indexer are strings or sequences of ASCII characters.

A list of the commands used to position samples is included in Appendix B. This

list is by no means comprehensive, it only contains the commands are presently

used in the program. The reader is referred to [S] for a comprehensive list of

available commands. Sending commands to the PC23 involves transferring each

character in the command, one character at a time. Each character transferred

requires that the sender notify the receiver that a character is ready, and the receiver

notify the sender that the character has been received. This notification process

makes use of single bit flags in the SB and CB registers that are set high (1) or low

(0) to denote the ready or busy condition (bits 3 and 4 of the SB and bit 4 of the CB).

There are step by step procedures that must be followed in order to program the

PC23 board. Every program that controls and monitors the PC23 board must

_ contain routines to do the following:

1. Reset the indexer.

2. Send a command string to the indexer.

3. Receive a character string from the indexer.

The step by step procedures to be followed in orde~ to implement each of the above

operations will next be detailed. Note: all anding operations are bitwise logical

ands.

www.manaraa.com

39

Resetting the PC23

1. Write 64h to the Control Port (Base address+ 1).
2. Read the Status Port (Base address+ 1) until the status byte

anded with 20h, is greater than 0.

3. Write 40h to the Control Byte (Base address + 1).
4. Write 60h to the Control Byte (Base address + 1).
5. R_ead the Status Port (Base address+ 1) until the status byte

anded with 7Fh equals 17h.

6. Write 20h to the Control Port (Base address+ 1).

7. Write 60h to the Control Port (Base address + 1).

Reading a Character from the PC23

1. Initialize the ASCII variable to null (0).

2. Read the Status Port (Base address+ 1) until the status byte

anded with 08h is greater than 0.
3. Read the Data Port (Base address) into the ASCII variable.
4. Write EOh to the Control Port (Base address + 1).

5. Read the Status Port (Base address+ 1) until the status byte
anded with 08h equals 0.

6. Write 60h to the Control Port (Base address + 1).

Writing a Character to the PC23

1. Convert the character to ASCII (not necessary when

programming in C except for binary input mode for axes in the
TDmode) ..

2. Read the Status Port (Base address+ 1) until the status byte

anded with lOh is greater than 0.

3. Write the ASCII character to the Data Port (Base address+ 1).

4. Write 70h to the Control Port (Base address+ 1).
5. Read the Status Port (Base address + 1) until the status byte

anded with 10h equals 0.

6. Write 60h to the Control Port (Base address + 1).

www.manaraa.com

40

The control program written for this project uses five functions to implement

the above operations. They are called Initialize, ReadChar, ReadAnswer,

WriteChar, and WriteCmd. These functions as well as others in the control module

are detailed in following chapter.

2.6 Motor Drives

There is a motor drive for each of the three main axes described below:

X Axis- This axis is the horizontal linear axis for moving the sample left and right

through the pencil beam of radiation.

Z axis - This is the vertical linear axis for moving the sample up and down within

the pencil beam of radiation.

9 axis- This axis rotates the sample through the radiation beam with the axis of

rotation being vertical (parallel to the Z axis).

It is a combination of the X and Q axes that allow us to obtain the full data set

for a tomography scan. The type of tomography scan done here at the Center is

done with what is called a first generation CT scan configuration, the medical

industry is now up to a fifth generation system that is much faster and considerably

more costly. The procedure presently used for obtaining a tomographic data set

with the point detector is as follows. Scan horizontally (on the X axis) for a specified

total X distance, moving the specified X axis increment amount each time and

counting photons at each poin.t for a given time (in seconds). Then the sample is

rotated one angular increment on the 9 axis and the linear scan direction is reversed

and continued. This procedure is repeated until all angular projections have been

completed. This method yields a large two dimensional array of data points each

containing a photon count representing the X-ray attenuation for a given sample

www.manaraa.com

41

point. These sample points can then be reconstructed using one of the computed

tomography (CT) reconstructions algorithms on the computer which yields a two

dimensional view of a cross sectional slice through the sample.

There are two other types of scans used at the Center with this equipment,

they are a one-dimensional line scan (1 0 scan), and a two-dimensional digital

radiography scan (20 scan). The 10 scan may involve any of the linear or rotational

axes, while the 2D scan is hard coded to only use the X and Z axes.

www.manaraa.com

42

CHAPTER 3. PROGRAM DESCRIPTION

This chapter will describe the program purpose, structure, and the main

functions within the program modules. A flow diagram of this program is

presented in Figure 14 and can be used as a reference throughout the description.

The functions described will be those that actually do the three main types of data

acquisitions and those that are needed to communicate with both the MCA data

acquisition board and PC23 Indexer board.

3.1 Program Purpose

This program is designed to do three main types of data acquisition: a one

dimensional scan, a two dimensional scan, and a tomographic scan. In each of these

types of scans the purpose is to move the sample positioner along the specified axis

(or axes) stopping at each delta increment on each axis to collect photon counts for a

specified amount time at each point. The sample positioner moves the sample an

additional delta increment along the axis and to the new data acquisition position.

This procedure is repeated until all of the distance on the. given axis or axes has

been traversed and all data collected. The program saves these photon counts in an

output file in a grd file format tope used by either the Surfer or Grapher software

packages. This file can also be used as input for the tomographic reconstruction

program.

An option available on any of these types of scans is to collect energy

sensitive data in multiple energy bins at each point, as well as obtaining the total

photon counts(i.e. the sum of all energy bins). This option when used prompts the

user for the number of energy bins and for each energy bin upper and lower values

www.manaraa.com

43

Yes

Figure 14. Flowchart of data acquisition program

www.manaraa.com

44

for each bin. The output for this option is as follows: The total photon count for all

bins at each acquisition point is <;ontained in a grd file named by the user. The

energy bin data is then stored in a separate file for each energy bin specified by the

user in the grd format (see Appendix C for grd ASCII file formats) with following

naming convention: The bin files are named using the given output file name

without its extension; but using a new extension with the following format: '.en#',

where# = 0 to (total number of bins- 1). For example, if the user specified an

output file name of 'ceramic.grd' and chose energy bin collection with 4 bins

specified, then the sum of all energy bins at each point would reside in output file

ceramic.grd and the energy bin data for each bin would be in files: ceramic.enO,

ceramic.enl, ... , ceramic.en3 for each bin number 0 to 3. A detailed description of

each program module that accomplishes these scan types is now presented.

3.2 Acqray.c module

The acqray.c module contains all of the functions that actually implement the

three main scan types. This module also contains an initialization function, a

dynamic memory allocation function, functions to write the output data to files, find

the minimum and maximum values for the photon counts, test output file name for

DOS legality, and a function to handle the multiple energy bin case. A detailed

description of these functions within this module follows~

Function InitEver.ything(void)- This function initializes both the PC23

Indexer board and the MCA data acquisition board so all control registers are

cleared and readied to accept command strings. This involves calling the Initialize()

function in the moverf.c module to initialize the PC23 board and sending the ASCII

string 'Initialize' to the MCA board (see Appendix A for the description of the MCA

www.manaraa.com

45

commands). InitEverything() also initializes all flags and MCA mailbox pointers

used in this module. The flags that are initialized by this module are described in

Table 3-1.

The mailbox pointers and their use within the program are described below:

*mcb_outflg

*mcb_test

*mcb_outlenlo

*mcb_outlenhi

*mcb_outbuf

*mcb_inflg

=>Set TRUE when a command is ready.

=> Written to and then read to see if mailbox exists.

=> Low byte of the length of the command string.

=> High byte of the length of the command string.
=>Buffer in the 916 MCA for commands.

=>Set TRUE by 916 MCA when it's response is ready.

Table 3-1. Initial flags and their values

Flag Name Description of flag Initialized to:

rot flg When TRUE says use the rotational axis. FALSE

Zflag When TRUE says use the Z axis, else use X. FALSE

Live_ Time_flag When TRUE means count photons using the TRUE

Live time preset within the MCA board.

First_Acq When TRUE says that this acq. point is the first FALSE

one.

redo flag When TRUE says to redo the first acquisition. FALSE

mult_fact Multiplicative factor to allow us to adjust the 1

photon count off the sample when counting in

real time instead of live time.

www.manaraa.com

46

*mcb _inlenlo => Low byte of the length of the response string.

*mcb _inlenhi => High byte of the length of the response string.
*mcb_inbuf => Buffer in the 916 MCA for it's response.

This function needs no input parameters and returns nothing.

Function one D scan(char)- This function implements the one dimensional

scan operation. The axis chosen is selected by the user in the user interface section

and then passed to this function. Any of the following axes may be used: Theta, X,
I

and Z. Within this function we first check to see what axis is used, set the

appropriate flag for this axis, and then determine the number of moves on this axis.

The number of moves is calculated by obtaining the difference between the ending

axis value and the beginning axis value and dividing it by the increment to use on

this axis. For example, if we use the X axis and the X start value= 0.0, the X end

value= 1.0, and the increment for the X axis is 0.01, then the number of moves= (1-

0) /0.1 = 10. At this point the axis direction is determined and stored in its direction

variable. All axis directions are determined by the arithmetic sign of the difference

between the end axis value and the start axis value. If this diff~rence is positive

then we move in the positive direction for this axis, if it is negative then we move in

the negative direction. We then ensure that the output file name supplied by the

user is a valid DOS file name and then create the command strings to be used by

this axis. There will be two strings to use, one for the forward direction and one for

the reverse direction.

We are now ready to enter the main loop (the only loop that the one axis

needs). In this loop we move the sample positioner if this is not the first data

acquisition point. We then call the acq_data() function to acquire the photon count

data for this point. We continue on with this sequence, move the positioner, acquire

www.manaraa.com

47

the photon count data, and repeat until the we have moved the total number of axis

moves. When finished with the data acquisition (terminate from the main loop), we

save off the output data to the output file and then reposition the sample to its

original position.

Function tomo scan(char char) - This function does as its name implies, the

tomographic scan. Two values are passed to this function, they are the two axis

numbers to use for the tomographic scan (for example, the X axis and the theta axis).

This function then determines how many moves must be done on each axis used

and how many motor steps for each move. Refer to the one_D _scan function

description for an example how these are calculated. Before any data is actually

collected, the output file name specified by the user is checked to insure that it is a

legal DOS file name, if not, then the user is prompted for a legal name until one is

given. Next the function creates command strings for each move to be sent through

the PC23 board to its two axes. These strings contain all the motor drive

information such as the axis to use, the motor resolution for this axis, the

acceleration and velocity for this move, the move distance in motor steps, the axis

direction to move in, and finally the go command which says execute this command

string. Four command strings are created, two for each axis. The two for each axis

are for both the forward and reverse axis directions. At this point, the function calls

the allocate_ TempO function to allocate dynamic memory for the huge two

dimensional array that will hold the total photon counts for each scan point.

At this point, we are ready to start the main loops that actually accomplish

the tomographic scan. The outside loop, the rotational axis loop, controls the

rota tiona! axis of the scan and is a for loop going from i = 0 to i =

num_rotational_moves. At the end of the inner loop ,called the linear loop, this

www.manaraa.com

48

rotational loop checks to see if this is an even or an odd numbered scan. If it is an

even scan then the linear loop variables are set up to scan on the linear axis in the

reverse direction and to store this data in the two dimensional array in reverse form

for the next linear axis pass. Otherwise, the linear scan is done in the forward

direction. This is done so that the sample does not have to be moved back to its

original starting position after each linear scan. The rotational axis loop then moves

the rotational axis one more increment and starts the linear loop again.

Within the linear loop, the sample is moved one linear axis increment if it is

not the first data acquisition point for each linear scan. This move is either in the

forward or the reverse direction as determined by the even or odd rotational scan

number (see above for further details). The function then calls the acq_data()

function which actually sends other command strings to the MCA data acquisition

board. The description for this function is included later in this chapter. This linear

loop also contains some of the control statements to handle the multiple energy bins

scan case.

At the end of this function we clean up by closing the file pointers for the

multiple energy bins if they were opened, storing out the total photon count data,

_ and then repositioning the sample to its original position on both axis. We also

store out to an extra file called useful.dat containing the following information: the

beginning and ending energy values for each energy bin and then the minimum

and maximum count values for each energy bin. This then concludes the tomo_scan

function and control is returned to the calling functi.on.

Function two D scan(char, char) - This function implements the two

dimensional scan, similar to the tomographic scan except this function can be done

using any two axes (i.e. it does not require a rotational axis). Otherwise, the layout

www.manaraa.com

49

of this function is very similar to the tomo_scan function. If one understands the

structure of the tomo_scan function then this function is easy to understand. The

only differences are in the axes that may be used; this effects the command string

creation and sample position return. Except in the creation of the command strings

to send to the PC23 board the description for ~e tomo_scan function can be studied.

We refer the reader to Appendix D (the program listing), if any additional specific

details are desired.

Function one tomo scan(char) - This function exists for the sole purpose of

doing one extra linear scan for the tomographic scan. This scan is done by first

moving the positioner on the rotational axis to an angle equal to (thetaMax -

thetaMin) /2 + thetaMax, then doing the line scan and returning the sample

positioner to its original position. The reason for this extra scan is to have one more

projection data set to use to help determine the center of rotation of the scan. For

example, if we are doing projection angles from 0 to 180 degrees, then we would do

one extra linear scan at an angle of 180/2 + 180 = 270 degrees. Then this data could

be compared with the data taken at 90 degrees along with the 0 degree and 180

degree data sets to enable us to have two data sets in order to better determine the

center of rotation.

Function acq data(void).- This function returns an unsigned long value

representing the photon count total of the selected MCA channels. It first sends a

clear command to the MCA board, then sets the live count preset to equal the value

of the count time entered by the user in the user interface section of the program.

This forces the MCA board once started to count for count_time seconds of actual

live time, not wall clock (or real time). An explanation of this difference is now in

order. Real time counting for 2 seconds would literally be counting for 2 wall clock

www.manaraa.com

50

seconds; however, if the electronics within the detector I MCA board become

saturated due to the large number of photons striking the detector, then it will miss

some of these counts. The MCA board has a mechanism for pausing itself so it can

catch up and not miss counts. This mechanism is used by setting the live time

preset for 2 seconds and this will yield a full2 seconds of good count time (i.e. will

not miss counts due to saturation).

Whenever a command string is sent to the MCA board this function calls the

mbxio() function to actually send the command string. The acq_data() function then

sends a start command to start the data acquisition and sets up a command string of

show _active which when sent to the MCA board will cause this board to send a

response record showing the active MCA segments (i.e. those that are still

counting). The function then loops until the response record returned is equal to all

zeros, saying that all segments are done counting. A pointer is then set up that

points to the beginning of the dual port memory in the MCA board. This pointer is

then appropriately offset to sum up only the channel photon counts that are to be

used (out of the total of 2K channels) If we are doing a multiple energy bin scan,

then this function handles the energy bin count selection and summation for each

bin. The function then returns either the total photon count, if not doing a multiple

energy bin scan, or the total of the last energy bin selected. In the multiple energy

bin scan cases, the global array called bin_ data[][] is filled with the various energy

bin counts by this function.

Function mbxio(char *, char *, char*) - This function handles all of the direct

communication to the MCA board and then evaluates and returns all of the

responses from this board as well. Refer to the mailbox communication explanation

contained in the Chapter 2 MCA section for details as to how the mailbox hardware

www.manaraa.com

51

is set up for this communication. The parameters are as follows: the command

string to be sent to the MCA called command, the response string called response,

and then the percent response string called per_response. For more information on

the MCA board commands and their response records see Appendix A.

We first initialize both of the message flags and set a start time equal to the

current internal PC.time and loop until the we either see the appropriate response

from the MCA board or have had five seconds elapsed. If the five seconds does

elapse before we get the expected response (output flag= OFFh), then this function

returns a error flag= -1. If we do get the appropriate response then we copy the

command sent to this function to the output buffer within the MCA, write out the

length of the output message, and then set the out flag to say the command is ready.

At this point, we call the get_resp() function and copy its return value into the first

response string. We check this response to see if it was a percent response i.e., the

first character is a percent sign,'%'. If it was and the command sent should cause a

response record to be sent back first, ~en we have an error condition returned from

the board. If it is not a percent response, then we copy the per_response string into

the response string and go get the next response which should be the percent

response returning from the MCA board showing no error condition. This function

then returns the response and percent response to the calling function as well as an

integer representing whether or not an error was detected.

function get resp(yoid) - This function polls the MCA board for the input

flag to be set, if this occurs within 5 seconds, then we go on to obtain the message

length from the MCA board, else we return an error condition saying the MCA

board is not responding. Assuming, we get the inp~t flag as expected, we then

obtain the message length and copy the message from the MCA input buffer to the

www.manaraa.com

52

resp_buf string within this function. We then reset the input flag and return a

pointer to the response string.

Function allocate TempCvoid) -This function attempts to allocate enough

dynamic storage to hold all of the output data expected for the scan. It is expected

that due to other limitations the maximum scan grid size will be 256 x 256. This size

would require 256 x 256 x 4 bytes/element= 256Kbytes of storage, so if in the future

this limitation no longer exists, it would not be hard to bump up against the DOS

limit of 640K for both data and program. Note: to use the same amount of space

with one of the 10 scans you could specify 64K data points on the linear scan. For

now this function should not have a problem allocating memory unless other

programs or structures have not terminated and still have allocated memory.

However, if this does occur and there is not enough memory to allocate for the

whole scan the program terminates immediately and does not acquire and then lose

data.

Function free Mem(void) -This function frees up the dynamic storage

allocated by the allocate_ Temp function.

Function write 20 to file(void) - This function is called by all two

dimensional type scans including the tomo _scan, it then opens the output file for

write and writes out the output data from the huge data array called Data Temp to

this file.

Function write 1 D to file(void) - This function is called by the one

dimensional scans, it then opens the output file for write and writes out the output

data from the huge data array called DataTemp to this file.

www.manaraa.com

53

Function find limitsCint, int, int)- This function searches the huge

Data Temp array for the minimum and maximum values and then sets the global

variables Min and Max to these values.

Function wait for mover< void)- This function polls all three axes on the

PC23 board to report the current axis position, which is done only after each axis is

with any moves in progress. This is the method used to insure that all moves are

completed before continuing on with the data acquisition.

Function make good filename(char *, char *) - This function adds an

extension passed to it to the DOS filename also passed to it.

Function insure legal file name(void) - This function does a trial file open

on the file name contained in the global fileName char string. It gives the user

additional chances to type in a legal DOS file name until the open is successful. In

this way, it is not possible to have the data acquisition finish and then find out the

file name is not legal, terminate the program and lose all of the acquired data.

Function input energy bins(void)- Uses global array ene_bins[][] and

global variables slope and intercept (which define the calibration curve for the

MCA. This function gives the user the chance to change these default slope and

_ intercept values. It then prompts the user for the number of energy bins he or she

wishes to specify as well as for the starting and ending energy values for each of

these bins. A conversion is done on all of the energy values given by the user so

~at they are stored as channel numbers instead of energy values. These channel

numbers are then used to offset the dual-memory port pointer to obtain the proper

photon count data for each bin.

www.manaraa.com

54

3.3 Moverf.c module

Module Summar.y- This ~odule contains the functions that actually

communicate with the PC23 Indexer board. These functions initialize this board

and handle reading and writing to and from the board. The reader is referred to

Appendix D for a listing of this module. We will now detail each of the functions

contained in this module.

Function Initialize(void) - The initialize function and indeed all of the

functions in the moverf.c module work with a structure describing the register

locations on the PC23 Indexer board. The variable used is a global variable called

board which is a pointer to a structure called Board_struct defined as follows:

struct Board_struct {

long base;

long Command;

long Control;

long Status;

long Data;

}; *board;

As illustrated above this board variable is indeed a pointer to the Board_struct

structure which contains the base address field and the other fields called

Command, Control, Status, and Data. These fields within the structure are

initialized to point to the base address of the PC23 board, the Command register,

the Control register, the Status register, and the Data field on the PC23 board itself.

Within this function we set up these addresses correctly then output to the

1/0 port address given by dereferencing the board->Control register address and

sending to it a STOP which is a bit pattern defined in the header file mover.h that

www.manaraa.com

55

this board recognizes as a stop function. We then loop waiting for the board to

return the proper status (a OOh when the status register contents are bitwise anded

with the FAIL_MASK, 20h). We then output to the control register the normal

control byte= 60h, i.e. bits 5 and 6 set), followed by a START command (40h), the

control byte used to restart the board. We now loop until the board's status register

does not contain a RESTART bit pattern (7Fh anded with 17h) or until we time out

without the board returning the proper status. If we do time out then this function

returns an error condition, else we again output the control byte Ox60 and return a

positive integer signalling a good function return. This function returns an integer

either signalling a good return or an error condition.

Function WriteCmd(char *)-This function is used to write a character string

representing a PC23 command one character at a time by calling the WriteChar

function and passing to it one character at a time of this command string. This

function firsts sends an ASCII space character (32), then the command string one

character at a ti~e, followed by an ASCII carriage return (13). There is no value

returned by this function.

Function WriteChar(char) - The WriteChar function accepts a single ASCII

character passed to it and then loops until the PC23 board returns a OxOO status.

Then the single character passed to this function is written out to the PC23 board's

command register, followed by a IDB byte (70h, the control byte used to set CB4).

We then loop again waiting for a status of OxOO, signalling that the PC23 board is

ready to accept a new command. We then send a control byte, CB = 60h, again and

wait for the status of OOh to be returned .. At this point this function terminates and

returns control to its calling function.

www.manaraa.com

56

Function ReadAnswer<char *)-The ReadAnswer function does as its name

implies, it reads a string of characters from the PC23 board by relying on the

Read Char function to read one character at a time. It continues to read a single

character at a time until a carriage return (ASCII 13) is read. This function continues

to place the single character returned by Read Char into a variable called

answer_string which is a pointer to a character (string). This pointer is passed to it

by the calling function so that the calling function's string variable is actually

modified.

Function ReadChar(void) - The Read Char function returns a character read

from the PC23 board. It firsts reads the status register and if the byte returned from

this register is not equal to OxOO, then it loops until the status byte is equal to OxOO.

It then reads a byte in from the data register on the PC23 board, puts it into the

return_byte variable, and outputs an acknowledge control byte (OEOhO) to the

board's control register. It then waits until the status register again reads OxOO and

outputs a control byte of Ox60. This f~nction then returns the value in the

return_byte variable.

3.4 Header files

The following header files contain define statements. and global variable an~

function definitions and prototypes. They set up in the C language tradition to

better facilitate changes within the hardware setup. For example, if the user

changes the base address of the PC23 board in the personal computer all that need

be changed in the data acquisition program is the address in the PC23BASE define

statement in the acq.h header file and then recomp~le the program. There are

numerous other examples of things that can be easily modified in this program by

www.manaraa.com

57

making changes to these header files. A brief description of the type of things

included in both the acq.h and mover.h header files follows.

Acq.h- This module contains numerous define statements to define

parameters such as the maximum number of bins allowed in a multiple energy bin

scan, the number of points that are collected in these multiple energy bin scans

before a write to the output file is done, the number of inches per step and the

number of degrees per step for the stepper motors, the default axis numbers for the

various axes, the default acceleration and velocities for these axes, and the default

MCA number (should match the MCA board number selectable on the board itself).

There are a number of other parameters defined in this file: the default addresses

for the MCA board, the default PC23 board base address, etc. For a complete list

refer to the header file listing contained in Appendix F. This header file also

contains some function prototypes and global variables used by the user interface

modules.

Mover.h- This Mover.h header file contains additional define statements for

the PC23 board such as the control byte and mask bit definitions. This header file

also contains the definition of the global board structure called Board_struct and the

associated structure pointer variable called board, as well as the function prototypes

for the functions in the moverf.c module.

www.manaraa.com

58

CHAPTER 4. CONNECTION MACHINE

This chapter will describe some general parallel architecture issues, some

general issues involved in parallelization of software, Thinking Machines

Connection Machine, and some details about the way the Connection Machine can

be programmed. We will also give an assessment of the success we had and

compare it to some of the successes found in the literature. We looked at

parallelization of an image processing median filter program because it has in it

some inherent issues that make it difficult to parallelise (i.e. a lot of data

dependencies that will become more apparent in the discussion of this program).

We will first look at the parallel machine architectures to gain some understanding

of some of the terms used in describing these architectures.

We looked at parallel architecture machines in order to pursue a method of

speeding up the computer intensive image processing and reconstructive

algorithms. Both of these algorithm types involve doing the same type of operation

on large amounts of data. For example, image processing filter algorithms typically

must do pixel by pixel sorts for each pixel in the image (may use image sizes of 256

. x 256 pixels).

4.1 Parallel Machine Architectures

When classifying computer architectures in the past, the most prevalent

system used is one called Flynn's Taxonomy [6]. T~is system attempts to classify a

computer into one of the following four classes:

www.manaraa.com

59

SISI2- Single Instruction, Single Data stream machines. This describes a

standard serial computer with one instruction stream and one data stream.

MISD- Multiple Instruction streams, Single Data stream. This class would

involve multiple processors applying different instructions to a single datum.

This class though hypothetically possible is generally deemed impractical by

the computer industry.

SIMD- Single Instruction stream, Multiple Data streams. Machines in this

class involve multiple processors simultaneously executing the same

instruction on different data.

MIMD- Multiple Instruction streams, Multiple Data streams. These

machines have multiple processors autonomously executing diverse

instructions on diverse data.

Although these categories provide a useful mechanism for characterizing

computer architectures, they are deemed insufficient for classifying various modem

computers. For example, pipelined vector processors merit inclusion as parallel

architectures since they exhibit substantial concurrent arithmetic execution by

executing hundreds of vector elements in parallel. However, it is difficult to classify

these vector processors with Flynn's Taxonomy because vector processors do not

have processors executing the same instruction operation simultaneously within a

clock cycle such as in SIMD, and they lack the asynchronous autonomy of the

MIMD category [7]. Duncan in his paper attempts to expand on this classifying

system as shown in Figure 15. He has three main categories called Synchronous,

MIMD, and MIMD paradigm.

www.manaraa.com

60

Vector

Processor Array

Synchronous

. Associative memory

Systolic

...---- MIMD/SIMD

.,_ ___ Dataflow

MIMD paradigm -

.,____ Reduction

.._ ___ Wavefront

Figure 15. High-level taxonomy of parallel computer architectures [7]

www.manaraa.com

61

The Synchronous class is defined as parallel architectures that coordinate

concurrent operations in lockstep through global clocks, central control units, or

vector unit controllers. This class is for the pipelined vector processors previously

discussed. Examples of this type of architecture include the Cray 1, Control Data

Cyber 205, and the Fujitsu VP-200.

SIMD - The SIMD category of machines typically employ a central control

unit, multiple processors, and an interconnection network for either processor to

processor or processor to memory communications. The control unit broadcasts a

single instruction to all processors which execute the instruction in lockstep fashion

on local data (local to the processor). Examples within this category include the

Illiac -IV, the Burroughs Scientific Processor, Loral's Massively Parallel Processor,

and the Thinking Machines Connection Machine.

Also within the Synchronous category are the systolic array architectures.

Systolic array architectures evolved fr<?m attempts to get more efficient computing

bandwidth from silicon. Systolic arrays can be thought of as a method for designing

special-purpose computers to balance resources, 1/0 bandwidth and computation

[8]. Refer to the Duncan paper [7], or a paper by H.T. Kung of Carnegie Mellon

University [9] for more information on the systolic array architectures.

MIMD- The MIMD architectures employ processors that can execute

independent instruction streams, using local data. MIMD computers then support

parallel solutions that require their processors to operate in an-autonomous manner.

Software processes executing on MIMD machines can communicate by one of two

means: 1. Message passing, or 2. Shared Memory. .

www.manaraa.com

62

Message passing MIMD computers have multiple processors that are

synchronized by passing messages from one processor to another through an

interconnection network. This is the way message passing machines share data

amongst their processors.

Shared Memory MIMD computers still have multiple processors, but the

communication between them is accomplished through a global shared memory

unit which all processors can access at some point. These architectures involve

multiple general-purpose processors sharing memory, rather than a CPU and

peripheral 1/0 processors. Problems that must be solved for this type of machine

are data access synchronization and cache coherency. These architectures must also

have built in hardware support for atomic synchronous mechanisms, such as a test

and set instruction, to allow the use of software synchronous tools such as

semaphores and/or monitors.

MIMD Paradigms- This category is included to classify MIMD based

MIMD/SIMD hybrids such as dataflow architectures, reduction machines, and

wavefront arrays. Each of these types is predicated on MIMD principles of

asynchronous operation and concurrent manipulation of multiple instruction and

data streams. However, each of these architectures is also based on a distinctive

organizing principle as fundamental to its overall design as MIMD characteristics.

Dataflow Architectures- The fundamental feature of dataflow architectures

is an execution paradigm in which instructions are enabled for execution as soon as

all of their data operandi become available. Thus the sequence of execution is based

on the flow of data. Examples of this type architecture are the Manchester Data

Flow Computer, MIT Tagged Token Data Flow architecture, and the Toulouse LAU

System. For more information on these data flow machines refer to [10].

www.manaraa.com

63

ReductiOn Architectures- Reduction or demand driven architectures

implement an execution paradigm in which an instruction is enabled for execution

when its results are required for one of another instructions operands. Reduction

program execution consists of recognizing reducible expressions, then replacing

them with their calculated values. Therefore, an entire reduction program is

ultimately reduced to its result. Further information on this type of architecture <.:an

be found in [11].

Wavefront Array Architectures- Wavefront array processors combine

systolic data pipelining with an asynchronous dataflow execution paradigm. 5-Y.

Kung et al. [12] developed wavefront array architectures in the early 1980s to

address the following problems- producing efficient, cost-effective architectures for

special-purpose systems that balance intensive computations with high 1/0

bandwidth (the same problems that led to systolic array architecture research).

Wavefront and systolic architectures are both characterized by modular processors

with regular local interconnection networks. However, wavefront arrays use

asynchronous handshaking as the mechanism for coordinating interprocessor data

movement instead of using the global clock and explicit time delays used for

_ synchronizing systolic data pipelining. This handshaking mechanism makes

computational wavefronts pass smoothly through the array of processors without

intersecting as these processors act as a wave propagating· medium. The advantages

of wavefront architectures over systolic arrays include greatly scalability, simpler

programming, and greater fault tolerance. Example.s of this architecture have been

constructed at Johns Hopkins University and at the Standard Telecommunication

and Royal Signals and ·Radar Establishment in the United Kingdom.

www.manaraa.com

64

This concludes the discussion of different types of computer architectures

and some of their design issues. Next we will describe the architecture of the

Thinking Machines Connection Machine called the CM2.

4.2 Connection Machine Architecture

Most computer programs consist of a control sequence and some data

elements. Large programs consist of tens of thousands of instructions operating on

tens of thousands or even millions of data elements. There is, in theory, an

opportunity for parallelism in both the control sequence and in the collection of data

elements. In the control sequence we can identify threads of control that can

operate independently on different processors. This approach is called control

parallelism and is used for programming most multiprocessor computers. The

primary difficulty in this approach is the difficulty of identifying and synchronizing

these independent threads of control.

Alternatively, we can take advantage of the large number of independent

data elements by assigning one processor to each data element and performing all

operations on the data in parallel. This approach called data parallelism, works best

for large amounts of data [13]. It is this approach that led to the massively parallel

architectures containing thousands or even millions of processing elements. Early

examples of this type of architecture include ICL's Distributed Array Processor

(DAP), Goodyear's Massively Parallel Processor (MPP), Columbia University Non

Von, and now Thinking Machines Connection Machine.

The Connection Machine provides 64K physical processing elements and

millions of virtual processor elements with its virtual processing mechanism. It also

provides a general-purpose, reconfigurable communications networks.

www.manaraa.com

65

The Connection Machine is a data-parallel system with integrated hardware

software .. Referring to Figure 16, the Connection Machine can have from one to four

front end machines connected through a 4x4 Crosspoint switch to from one to four

control sequencers. Each sequencer controls up to 16,384 individual processors

executing parallel operations. A high performance, data-parallel 1/0 system

(bottom of Figure 16) connects the processors to a peripheral mass storage called the

Data Vault.

Systems software is based on the operating system or environment of the

front-end computer, with some software extensions. Programs have normal

sequential control and require no new synchronization structures. Thus it is

designed to be relatively easy to develop programs that can take advantage of the

Connection Machine hardware.

At the heart of the Connection Machine system lies the parallel-processing

units consisting of thousands of processors (up to 64K) each with thousands of bits

of memory (4K bits for the CM1 and 64K bits for the CM2). These processors are

logically interconnected using several mechanisms to support processor

communication.

These communication mechanisms are as follows:

Broadcast Communications - Broadcast communications allow immediate

data to be broadcast from the front end computer to all data processors at

once.

Global OR- The global OR is a logical OR of the ALU carry output from all

data processors. This makes it possible to quickly discover unusual or

termination conditions.

www.manaraa.com

66

4X4Nexus

Front end 0
DecVax

Bus Interface

I
Front end 1

Connedion Machine Connedion Machine DecVax
16,384 procesaon 16,384 proceeson Bus Interface

Front end2

Sequencer Sequencer DecVax -- 0 -- -- 3
I... Bus Interface

Front end 3

Sequencer Sequencer
DecVax

-. --- --- Bus Interface -- 1 2 -

Connedion Machine Connedion Machine
16,384 proce88orw 16,384 processors

I
I l I

I Data I I Data I Data I Graphic
Vault Vault Vault Display

Figure 16. Connection Machine organization

www.manaraa.com

67

Hypercube Communication- The virtual model supports hypercube

communications to form the basis for the router and numerous parallel

primitives. Hypercube topology consists of a Boolean n-cube. For a fully

configured CM-1, the network is a 12-cube connecting 4096 processor chips

(each chip consists of 16 data processors, an ALU, flag bits, and

communications interface for the 16 processors) so that each chip is a vertex

of a 12-cube.

Router- The router directly implements general pointers following with

switched message packets containing processor addresses (the pointers) and

data. The router controller uses the hypercube for data transmission, using

the standard hypercube nearest-neighbor communication scheme (i.e. each

processor is directly connected to its nearest-neighbors- nodes with node

I.D.s that differ by only one binary bit) .. It provides heavily overlapped,

pipelined message switching with routing decisions, buffering, and

combining of messages directed to the same address, all implemented in

hardware.

NEWS grid- The NEWS grid is a two-dimensional Cartesian gird that

provides a direct way to perform nearest-neighbor communications. All

processors would then communicate in the same direction (North, East, West,

or South) so that addresses are implicit and no collisions can occur. This

allows NEWS grid communication to be up to 6 times faster than

. communication using the router for simple regular message patterns.

Virtual Processors - The virtual processor mechanism in the Connection

Machine allows the programmer to use more processors than are physically

www.manaraa.com

68

in the machine. When the Connection Machine is initialized the application

specifies the number of processors required. If this number exceeds the

number of available physical processors, then the local memory of each

processor splits into as many regions as necessary, with the processor

automatically time-sliced among the regions.

4.3 Connection Machine Implementation

Converting existing FORTRAN programs to run on the Connection Machine

at Argonne National Laboratories (the machine used for this part of the project) is

not a terribly difficult task, if all you want to do is to just get them to execute on the

Connection Machine. It is another thing all together to get them to execute with

performance gain over what would be seen on a single processor RISC based

processor (in our case a DEC 5000). These changes involve converting array

definitions and usage to take advantage of the array extensions found in the

FORTRAN '90 standard. This primarily involves using an arrays like in the

following example:

INTEGER A,B: array(10), C: array(S)

A(1:5) = 0 Initializes the first five elements of the A array to 0.

B(6:10) = 1 Initializes the second five elements of the A array to 1.

B(1:5) = 2 Initializes the first five elements of the B array to 2.

B(6:10) = 3 Initializes the second five elements of the B array to 3.
C = A(3:7) + B(4:8)

The above statement then sets:

C(1) = 0 + 2 = 2

C(2) = 0 + 2 = 2

C(3) = 0 + 3 = 3

C(4) = 1 + 3 = 4

www.manaraa.com

69

C(S) = 1 + 3 =4

As this examples shows an array ·can be treated as if it were a single variable and

then the specified operation can be performed on all the specified array elements in

parallel. The intention is to make the parallelism as transparent to the programmer

as possible. However~ as previously stated, it is important to fully understand the

interprocessor communications and to utilize the fastest communication technique

possible. For more information on the CM FORTRAN style of using arrays and in

CM FORTRAN in general the reader is referred to [15].

We had hoped that converting these image processing and tomographic

reconstruction programs to run on the Connection Machine with performance

improvement, would be a easy task. It was also hoped that it would not require

much in the way of program changes to take advantage of this machines inherent

ability to handle parallel data problems. However, as the course of this part of the

project progressed, we discovered that the effort required to get a significant

performance improvement would quickly go beyond the scope of this MS thesis. A

source sited in the Connection Machine literature indicates that a man-year of

programming is needed to successfully convert a program [14, pp 33].

Further, this conversion project was dropped when we obtained a DSP co

processor board for our data acquisition machine. This board is capable of a peak

rate of 100 MFLOPS and has the advantage of being more available.

There are several programming issues that need to be discussed when ever a

parallel programming project is started. Conversion from serial programming

styles involves the identification of data dependencies, critical variables, and that

attention be paid to machine dependent mappings. First we attempted to

implement an image processing median filter program using CM FORTRAN.

www.manaraa.com

70

Figure 17 shows a pictorial representation of the input image array and the

wrapped image array for a median filter with a window size of 5 x 5. We use this

wrapped array to step through each of the original image array's pixels and then

looking at the 5 x 5 window surrounding this pixel and calculating the median pixel

value for these 25 pixels within the 5 x 5 window. This process is repeated for all

pixels in the original image and gives a smoother resultant image, filtering out high

noise characteristics.

This type of algorithm is quite compute intensive especially for an image size

of 512 x 512. This size of an image requires 262,144 (5122) calls to the sort routine

that sorts half of the window size until the median pixel value is found. The hope

was to be able to parallelise as much of these sort calls as possible. Machines such

as the Maspar (an architecture similar to the Connection Machine, but with more

powerful and faster processing elements) have been used by others to solve

problems that do not involve such huge arrays. They use arrays whose sizes are

less than or equal to the largest array size that will fit into memory (i.e. 64 x 64).

The huge array sizes we use in our programs are a huge implementation problem.

In order to implement this algorithm on the Connection Machine, we tried to

create the wrapped array and locate each pixel so that is was as close as possible to

it's surrounding window data to minimize the communication overhead: This

should allow us to do the partial sorts to find the median value within each window

in parallel. However, we saw a significant communication overhead so that the

program would take over 5 minutes to run for an image size of 128 x 128. This

median filter program would run considerably faster on the single processor DEC

5000 workstation (in a little under a minute). Most probably the problem was that

www.manaraa.com

71

89 90 81 82 82 84 85 86 87 88 89 90 81 82

99 100 91 92 93 94 95 96 97 98 99 100 91 92

9 10 1* 2 3 4 5 6 7 8 9 10 1 2

19 20 11 12 13 14 15 16 17 18 19 20 11 12

29 30 21 22 23 24 25 26 27 28 29 30 21 22

39 40 31 32 33 34 35 36 37 38 39 40 31 32

49 59 41 42 43 44 45 46 47 48 49 50 41 42

59 69 51 52 53 54 55 56 57 58 59 60 51 52

69 70 61 62 63 64 65 66 67 68 69 70 61 62

79 80 71 72 73 74 75 76 77 78 79 80 71 72

89 90 81 82 83 84 85 86 87 88 89 90 81 82

99 100 91 92 93 94 95 96 97 98 99 100 91 92

9 10 1 2 3 4 5 6 7 8 9 10 1 2

19 20 11 12 13 14 15 16 17 18 19 20 3 4

* Original image array indices shown by inner double border. Example image
size= 10 x 10 with a median filter window size of 5 x 5, yeilding a wrapped
image size of 14 x 14.

Figure 17. Filter program wrapped image array

www.manaraa.com

72

we were not able to properly set up the wrapped array within the Connection

Machine virtual machine structure so that this communication was minimized.

www.manaraa.com

73

CHAPTER 5. CONCLUSIONS

This thesis describes a data acquisition system for an X-ray based NDE

inspection research facility. A chapter explaining some background information on

some of the requirements for this type of system, an equipment description chapter,

a program description chapter, and a parallel processing chapter have been

included thus far in this thesis. This chapter will include some comments about

some of the problems encountered in testing this data acquisition system, and some

insight into some suggested areas to explore further in order to improve on the

existing system.

5.1 General Conclusions

The system described in the preceding chapters is installed and working at

the Center to enable us to collect energy sensitive photon count data for the lD, 2D,

and tomo scans.

In testing out this data acquisition system (hardware and software alike), a

number of problems were found. The more troublesome of these will be briefly

discussed in the following paragraphs.

A problem was encountered with the sample positioner not accurately

moving a given distance, especially on the X axis. This problem was puzzling for a

~hile because the distances were all correct when running the program through the

debugger. It was eventually found that the acceler?tion and velocity values that

were used were too fast so that the positioner motors would slip when trying .to

move the large weight of the positioner platform for the X axis. Lowering the

velocity and acceleration values for the X·axis fixed this particular problem.

www.manaraa.com

74

Another problem encountered was seen several months after using the

program. The symptoms for this.problem were that the sample was not returning to

the original position after a scan when using particular axis input parameter values.

The problem was hard to understand, but basically it amounted to a floating point

round off error. This problem when tested showed that for a particular series of

statements with a particular set of axis values, there were unexpected answers in

some floating point calculations. The program statement that was failing could be

reduced such that the problem was easier to understand. In a short test program

written to help evaluate this problem the following code fragment produces the

unexpected result:

float float1 = 1.0,

float2 = 0.0,
float2 = 0.1;

int int_ value;

int_ value = (int)((fabs(floatl - float2)) I float3);

Testing this through the debugger showed that for this code fragment the integer

portion of (1- 0)/0.1 was equal to 9. This was rather disturbing and originally

thought to be a problem peculiar to the compiler used. However, further testing

showed that this problem occurred on a DEC 5000 workstation using a completely

different C compiler and having a larger default integer size (32 bits as opposed to

16 bits for the PC). It would fail exactly the same way. This problem was traced to

a floating point rounding problem and has been fixed such that it is no longer a

problem. Apparently what was happening was that 0.0 was not 0.0 when cast to a

double (i.e. it was probably a "dirty" zero for instance 0.0000000000004987430). Well

www.manaraa.com

75

1.0- 0.0000000000004987430 is approx. 0.99999999 so that when divided by 0.1

and cast to an integer the result was truncated to a 9!

Currently the program forces all integers to be rounded to the next higher

integer when converting from a floating point or double value. This illustrates the

need for a careful, thorough test for the complete data acquisition program. The

following represents the test devised for the various scaris. Absolute position

markers were used on the positioner itself and then trial scans were run and the

resultant positions compared to these absolute position markers. This enabled us to

verify the positioning controlled by the acquisition program.

5.2 Future Work

Some suggestions come to mind for further work to be done to improve on

the system as it exists today.

20 slot PC - In order to work around the problem of running out of slots in

the standard PCs used here at the Center, we shopped for and have now ordered a

20 slot industrial AT compatible computer. This computer has not yet arrived and

when it does it will be interesting to see if we can implement all of the data

acquisition and image processing boards within a single computer and sill get

everything to work (i.e. the possible conflicts with Irqs. and 1/0 bus addresses, and

the possible bus timing problems as bus signals are fanned out to more locations).

Ariel board - As previously mentioned (Chapter 4), we have purchased a

high speed DSP processor board - an Ariel MM96 board with two Motorola 9601 Os

and 16 Meg of on board RAM. The literature on this board claims a peak speed of

100 MFLOPS. This board when installed and programmed should provide a drastic

performance improvement in the image processing algorithms and enable pro~ess

www.manaraa.com

76

in real time image acquisition and analysis. It is also going to be interesting to see

what kind of throughput we can get in implementing the tomography

reconstruction algorithm on this DSP board. We might see improvement in this

algorithm's throughput in a environment which is much more available to us. It

probably will prove to be easier to implement algorithms on this board than on a

massively parallel machine because the existing serial program version of this

program will not have to be drastically converted to a parallel algorithm version. It

will, however, have to be converted to the C language as the current version is in

FORTRAN and the only compiler available for the Ariel board is a C compiler.

Counterffimer board- The recent acquisition of a counter I timer board will

enable us to replace the old serial port communication scheme we had to use with

the single channel analyzer (SCA). This will allow us to completely avoid the

problems with the old interrupt service routine previously in use. So in the near

future, we hope to be able to use the SCA by installing this board and writing a

more trivial communication routine for it. The SCA is capable of energy sensitive

acquisitions, though it is only capable of collecting one energy bin per scan, whereas

the MCA can collect up to 2048 energy bins in one scan. However, the SCA has a

higher saturation value leading to increased efficiency and thus improved speed.

This can dramatically reduce the times required for completion of the longer 20 an~

tomo scans when using the MCA.

Parallel Processors- Although we determined that the time to convert a

program to its parallel equivalent is too prohibitive for our current needs, it would

be interesting, if the time does become available, or if newer and faster conversion

methods become available, to reinvestigate the usage of the Connection Machine or

www.manaraa.com

77

perhaps even better the MASPAR (which is available on campus here at Iowa State

University).

Vector Processors- The recent emergence of relatively cheap vector

processor boards for a PC ISA bus make it a potentially attractive alternative for

increasing the speed of the reconstruction and image processing algorithms. Some

of these board use the Intel i860 RISC processor which is highly touted for its

processing speed. This type of board would be more likely to lend itself to speed

improvement for the reconstruction algorithms than would the Ariel DSP board. It

would be an interesting project to determine the results for each of these types of

options.

Program Improvements- There are improvements that could be made to the

data acquisition program. The user interface needs to be improved enhancing the

data entry and error reporting abilities. It would also be worthwhile investigating

the options for getting around the DOS program size limitation of 640K.

Investigating the use of OS/2 or Unix would be worthwhile, but may require

programming device drivers for the MCA, SCA, and PC23 boards. Other

alternatives worth investigating are the use of protected mode compilers that allow

DOS programs to use extended memory thus greatly increasing the allowable

program size, and rewriting the program to be a Windows 3.0 program. The latter

option involves a considerable learning curve, but also offers the advantage of an

improved (and standard) user interface.

www.manaraa.com

78

BIBLIOGRAPHY

[1] Barrett, H. and Swindell, W. Radiological Imaging Volume 2: The
Theory of Image formation, Detection, and Processing. New York:
Academic Press, Inc. 1981.

[2] Herman, G.T. Topics in Applied Physics Volume 32: Image
Reconstruction from Projections Implementations and Applications. New
Y~rk: Springer-Verlag. 1979.

[3] Taulb, H. and Schilling, D.L. Digital Integrated Electronics. New York:
McGraw Hill. 1977.

[4] EG&G Ortec, GLP Series HPGe (High-Purity Germanium) Low-Energy
Photon Spectrometer. Oak Ridge, TN: EG&G Ortec, [n.d.].

[5] Parker Hamilton Corportation, PC-23 Indexer Operator's Manual.
Petaluma, CA: Compumotor Division, [n.d.]

[6] Flynn, M.J. "Very High Speed Computing Systems." Proc. IEEE 54
(1966): 1901-1909.

[7] Duncan, R., "A Survey of Parallel Computer Architectures." Computer
(Feb. 1990): 5-16.

[8] Hennessy, J.L. and Patterson, D.A. Computer Architecture: A Ouantative
Approach. San Mateo, CA: Morgan Kaufmann Publishers, Inc. 1990.

· [9] Kung, H.T. "Why Systolic Architectures?." Computer 15 (1982): 37-46.

[10] Srini, V. "An Architectural Comparison of Dataflow Systems." Computer
19 (1986): 68-88.

[1.1] Treleaven, P., Brownbridge, D., and Hopkins, R. "Data Driven Computer
Architecture." ACM Computing Survey 14 (1982): 93-143.

[12] Kung, S.Y., Lo, S.C, Jean, S.N., Hwang, J.N. "Waveform Array Processors
Concept to Implementation." Computer 20 (1987): 18-33.

[13] Hillis, W.P. and Steele, G. L. "Data-Parallel Algorithms." Communications of
the ACM 29 (12): 18-33.

www.manaraa.com

79

[i4] Tucker, L.W., Robertson, G.G. "Architecture and Applications of the
Connection Machine." Computer (August 1988): 26-33.

[15] Using the Connection Machine System {CM FORTRAN). Technical
Memorandum No.118, Rev. 1.Vol. 2. Argonne, Ill: Argonne National
Laboratory, 1989.

[16] EG&G Ortec,916A Hardware Manual. Revision 4. Oak Ridge,
Tennessee [n.d.].

www.manaraa.com

80

ACKNOWLEDGEMENTS

I would especially like to thank my thesis advisor /research coordinator,

supervisor, and friend, Joe Gray, for his never ending enthusiasm for his research

and for his complete trust in the opinions of his students. Though I might have

been able to obtain this degree without Joe's guidance and support, I most certainly

would never have been able to enjoy learning as much.

I would also like to thank all the people at the Center for NDE for their

unrelenting help. I would especially like to thank: Terry Jensen, Liz Siwek, Jason

Ting, Ron Roberts, Mark Kubovich, Ed Doering, Steve Nugen, Neil Johnson, Libby

Bilyeu, Connie Nessa, Sarah Jaqua, Diane Miller, Don Thompson, and all the others

for their help and guidance.

Thanks are also in order to my other committee members, Terry Smay and

Charles Wright. Without their availability and advice, it would not have been

possible to obtain this degree.

A special thanks goes out to Nancy, Matthew, and Kristen, whose love and

support keep me going and give me the ultimate purpose in all things I pursue. I

would never have had the enthusiasm for learning if it weren't for my parents, I

thank them from the. bottom of my heart.

This work was performed at Ames Laboratory under contract no. W-7405-

eng-82 with the U. S. Department of Energy. The United States government has

assigned the DOE Report number I5-T 1551 to this thesis.

www.manaraa.com

81

APPENDIX A. MCA COMMANDS

This appendix contains the MCA board commands used in the data

acquisition program described in this thesis. The command strings are built in the

acq_data() function and sent by the mbxio() function. The command responses are

read and monitored by the get_resp() function. All three of these function reside in

the acqray.c program module. For further information on these (or other) MCA

commands the reader is referred to [16].

The following is a detailed description of the commands used:

CLEAR
Sets data memory and counters for Live Time and Real Time to zero in the widow
of-interest. CLEAR is equivalent to the CLEAR_DATA and CLEAR_COUNTERS
commands. CLEAR cannot be used during data acquisition in the selected MCA
segment.

SET _LIVE_PRESET <VALUE>
Sets the Live Time preset value for the selected segment. "Value", in units of 20
milliseconds, is a decimal number expressed as ten ASCII characters. It is converted
by the MCA to a 32 bit unsigned binary integer.

START
Starts the data acquisition in the MCA.

SHOW_ACTIVE
Reports whether or not the MCA is acquiring data. The 16 bit answer is transmitted
as response record with the following format:

$C xxxxx CCC <DL>
16 bits of data expressed as a five digit (xxxxx) decimal value. The
upper limit of the decimal value is 65,535. The final three characters
(CCC) are the three digit decimal checksum. <DL> is the delimiting
character. ·

The five digit decimal value returns a 00000 only when ther~ is no active segment.

www.manaraa.com

82

STOP
Stops the data acquisition in the MCA.

There are numerous commands that the MCA recognizes but are not

currently used by the data acquisition program. Interested readers are encouraged

to refer to the manual [16] for a comprehensive list of these commands and their

corresponding syntax and responses.

www.manaraa.com

83

APPENDIX B. PC23 COMMANDS

This appendix contains the PC23 board commands used in the data

acquisition program described in this thesis. The command strings are built in each

of the scan type functions, one_D_scan(), two_D_scan(), and tomo_scan(). They are

then sent by the WriteCmd() and WriteChar() functions. The three scan functions

reside in the acqray.c program module, and the write and read functions reside in

the mover.c program module. For further information on these (or other) PC23

commands the reader is referred to [5].

All PC23 commands are upper case ASCII characters of the form:

[device address] [command] [parameters][delimiter 1

where: device address is a single digit from 1 to 3 (the axis number);

command is a two or three digit command beginning with an upper
case ASCII letter (A-Z);

parameters are optional command specific numbers or letters; and

delimiter is a SPACE or CARRIAGE RETURN.

The following symbols and conventions are used in the command

descriptions:

a = device address (1-3),
d =delimiter (space or carriage return),
n = ASCII digit in the range 0 - 9 unless otherwise specified in the

command summary. ·
s =sign(+ or-),
Character inside <> are optional.

www.manaraa.com

84

A Syntax: <a>Annn.nnd
Set acceleration; where nnn.nn is in the range of 0.01 - 999.99
revolutions per second/second. Motor will not move until a non-zero
acceleration below 999.99 is defined. Remains set until changed or
PC23 is reset.

V Syntax: <a> Vnn.nnd
Set velocity; Where nn.nn ranges from 0.01 to 20.00 revolutions per
second.

D Syntax: <a>D<s>nnnnnnnd
Set distance; where nnnnnnn = 0 to 99,999,999 steps. The distance
value set with this command will remain the default distance until a
new distance is defined, or the indexer is reset. Preset moves will not
be executed until the distance is defined as a non-zero value.

MR Syntax: <a>MRnnnd
Motor resolution select. This command sets the motor resolution in
the PC23 so that all commands specified in units of revolution (i.e.
acceleration and velocity commands) will be yield the correct value for
the parameter being specified. Where nn = 00 to 17. See Table B-1 for
available motor resolutions.

Table B-1. Motor resolution values to use in the MR command

nn Resolution * nn Resolution
00 200 10 25000
01 400 11 25400
02 800 12· 36000
03 1000 13 50000
04 1600 14 50800
OS 3200 15 4096
06 5000 16 12800
07 6400 17 25600
08 10000 18 12500
09 21600 19 16384

20 20000

*units are in steps/ revolution.

*

www.manaraa.com

85

H Syntax: <a>Hsd
Set direction according to s = "+" (CW) or"-" (CCW).

G Syntax: <a>Gd
Go- make a move using the previously entered parameters. It is not
necessary to re-enter A, V, and D for each move unless a change in one of the
parameters from the last move is necessary.

All of the above commands except the G (Go) command are what

Compumotor calls parameter commands. This means that these commands sets up

a parameter for operation, but does not cause operation. Parameter commands are

stored in the PC23 command buffer and executed in sequential order when and

execute command is received. The G (Go) command is one of these execute

commands.

The following example uses all of these commands to move the positioner

one move:

1MR20 1A1.0 1V5.0 1020000 1H+ 1G

This command then sets up the motor resolution to 20,000 steps per revolution, the

acceleration to 1.0 rev./ sec./sec., the velocity to 5.0 rev./sec., the distance to 20,000

steps (1 rev.), and the direction to CW for axis 1. It then sends a go to axis one to

execute the 20,000 step move.

There are numerous other commands that the PC23 recognizes but are not

currently used by the data acquisition program. Interested readers are encouraged

to refer to the manual [5] for a comprehensive list of these commands and their

corresponding syntax.

www.manaraa.com

86

APPENDIX C. OUTPUT FILE FORMATS

This appendix contains the ASCII GRD file format description and a brief

description of the ASCII DAT file format. This GRD format is used as the output

file format for all 2 dimensional scans (20 and tomo). The ASCII DA T file format is

used as the output 'file format for the lD scan.

ASCII GRD file fonnat

For this format description assume that we are doing a tomo scan (i.e. using

the X and 0 axis), then the format is as follows:

DSAA
X dimension 0 dimension
X axis beginning value X axis ending value
0 axis beginning value E> axis ending value
Minimum output data value Maximum output data value

DATArowl
DATArow2
DATArow3
DATArow4

www.manaraa.com

ASCII OAT file format;

DATA value 1
DATA value 2
DATA value3
DATA value4

87

www.manaraa.com

88

APPENDIX D. MODULE LISTINGS

acqray.c module listing:

I** I
I*** FILE: acqray.c, Rick Powell; Last Modif. Date: 05111191 ***I
I*** This program is used to acquire x-ray photon count data for either a*** I
I*** lD scan, a 20 scan, or a tomographic scan. It must be run on an IBM*** I
I*** PC compatible personal computer with an ISA compatible IIO bus. It ***I
I*** is hard coded to use the EG&G Ortec 916A multichannel analyzer and ***I
I*** the Compumotor PC23 Indexer and MC5300 motor controller. However, ***I
I*** the functions that read and write to and from the PC23 Indexer card ***I
I*** do not require that only the PC23 model of Indexer be used. Any ***I
I*** indexer card that accepts ASCII strings as commands and uses an IIO .,.,..,. I
I*** bus addressing scheme should work with only a minor modification to ***I
I*** the code (i.e. the define statement that sets up the base address of*** I
I*** the board will need to be changed to point to the new board address).*** I
I*** This of course assumes that the register structure of the Indexer ***I
I*** board remain the same. See the moverf.c module for more details on ***I
I*** this structure. The mea mailbox communications functions are not ***I
I*** as transportable to other EG&G Ortec mcas. The mailbox communication .,.,.,. I
I*** structure changes significantly for the different models requiring ***I
I*** more work be done before changing mea board types. It is still not ***I
I*** a major problem to update the code, just more difficult that for the ***I
I*** Indexer card. ***I

I*** This version of x-ray is setup to be compiled and linked using ***I
I*** Turbo C++ and its linker, as well as talking to the mea board ***I
I*** directly (i.e. not using Ortec's routines) using text mode ,.,.,. I
/*** windows and drop down menus. This version deletes threshold useage. ***I
I*** This module must be linked with the user interface modules which ***I
I*** provide the scan parameter information via global and passed ,.,.,. I
I*** variables. ,..,..,. I

- 1**1

I** I
I*** INCLUDE FILES ***I
I** I'
#include <stdio.h>
#:include <stdlib.h>
#include <limits.h>
#include <math.h>
#include <dos.h>
#include <fcntl.h>
#include <graphics.h>
#include <sys \ types.h>
#include <sys \stat.h>
#include <io.h>

www.manaraa.com

#include <conio.h>
#include <string.h>
#include <time.h>
#include <process.h>
#include <ermo.h>
#include <alloc.h>
#include "acq.h"
#include "mover.h"

I*** I

89

I*** FUNCTION PROTOTYPES for this module ***I
I*** I
void Ini tEverything(void);
void tomo_scan(char, char);
void two_D_scan(char, char);
void one_D _scan(char);
void one_tomo_scan(char);
unsigned long acq_data(void);
void sendString(char *cmdString, char callString[lS]);
void allocate_ Temp(void);
void allocate_mem(void);
void freeMem(void);
void write_2D _to_file(void);
void write_tD_to_file(void);
void find_limits(int, register int, register int);
int wait_for _mover(void);
void make_good_filename(char *,char*);
int getint(int *);
int getulong(unsigned long*);
int getfloat(float *);
void cis(void);
int clrkbd(void);
int newkbhit(void);
int mbxio(char *,char*, char*);
void insure_Iegal_file_name(void);
void input_ energy _bins(void);
void early _terminate(void);
static traverse_heap(void);
static check_heap(void);
extern int Initialize(void);
extern void WriteCmd(char *);
extern int ReadAnswer(char *);

I** I
I*** Global variables ***I
I** I
extern float param[S][5];
I*** paramater array contains the following: ***I
I*** X axis ===> xt_srt, xl_end, xl_inc, xl_ vel, xl_acl

www.manaraa.com

90

Y axis ===> yl_srt, yl_end, yl_inc, yl_ vel, yl_acl
Z axis ===> zl_srt, zl_end, zl_inc, z1_ vel, zl_acl
Theta axis ===> tl_srt, tl_end, tl_inc, tl_ vel, tl_acl
Phi axis ===> pl_srt, pl_end, pl_inc, pl_vel, pl_acl
X2 axis ===> x2_srt, x2_end, x2_inc, x2_ vel, x2_acl
Y2 axis ===> y2_srt, y2_end, y2_inc, y2_ vel, y2_acl
Theta axis ===> t2_srt, t2_end, t2_inc, t2_ vel, t2_acl ***I

extern float slope, I*** slope of calibration curve for mea bd. "'"'"'I
intercept; I*** intercept of the same curve for mea bd. "'"'"'I

extern int ene_bins[10][2]; I*** array to hold energy bin values"'"'"' I

int Zflag = FAlSE; I*** global to this module only,.,.,. I
int ans, I*** type of scan to be done ,.,.,. I

I*** 1 =move only, no acq. ,.,.,. I
I*** 2 = tomographic scan ,.,.,. I
I*** 3 = 10 scan (X or Z) ***I
1*,.,. 4 = 20 scan (X and Z) ,.,.,. I

num_X_moves, I*** Number of X axis moves to be done. ,.,.,. I
num_Z_moves, I*** Number of Z axis moves to be done. ,.,.,. I
num_theta_steps, I*** Number of theta axis moves. ***I
num_points = 0, I*** Number of data points taken since ***I

I*** last write of mult. energy bin counts. ***I
num_bins = 0, I*** Number of energy bins to used. ***I
beg_ chan = 0, I*** Beginning mea channel number. ***I
end_ chan = MAXCHAN, 1*,.,. Ending mea channel number. ,.,.,. I
rot_flag = FALSE, I*** Flag to show if rotation axis is used. ***I
Live_ Time_Flag = TRUE, I*** Acquire counts using live time acq. ,.,.,. I
First_Acq =FALSE, I*** Flag indicating first data point. ,.,.,.. I
redo_flag = FALSE, I*** redo first acquisiton if true. ***I
mult_bins_flag = FALSE, I*** TRUE if selected part energy from menu ,..,.,. I
mult_fact=l; 1,.,.* multiplicative factor. ***I

float Xmin, I*** Starting X axis value ,.,.,. I
Xmax, I*** Ending X axis value ***I
del taX, I*** X axis increment value ***I
Zmin, I*** Starting Z axis value ***I
Zmax, I*** Ending Z axis value ***I
deltaZ, I*** Z axis increment value ***I
thetaMin, I*** Starting Theta axis value ***I
thetaMax, I*** Ending Theta axis value ***I
delta Theta, I*** Theta axis increment value ***I
count_ time = 0.0, I*** Photon count time in sees. ,.,.,. I
tot_time=O.O;

unsigned long X_steps_per_move,
Z_steps_per_move,
theta_steps_per _move,
threshold, I*** Photon count threshold. ***I

www.manaraa.com

91

huge *"'Data Temp, I*** huge array for total channel counts.*** I
bin_data[MAX_BINS][POINTS_PER_WRITE], I*** energy bin data*** I
Min= ULONG_MAX,
Max= 0,
eLimits[MAX_BINS][2]; I*"'* [][O] ==Min, [][1] ==Max*"'* I

char Xdir, I*"'* Direction of X axis scan ***I
Zdir, I**"' Direction of Z axis scan ***I
thetaDir, I*** Direction of Theta axis scan ***I
*fileName, I*** Output file name ***I
XdirRev,
ZdirRev,
thetaDir Rev,
energy _choice; I*** 1 = All energy bins (channels ***I

I*** 250 -1950) inclusive. ***I
I*** 2 =A band of energy specified ***I
I*** by the user. ***I
I*** 3 = A single energy bin specified ***I
I*** by the user. ***I

unsigned char mcb;

static char far *mcb_outflg, I* Set true when command is ready* I
far *mcb_test, I* Written and read to see if mailbox exists* I
far *mcb_outlenlo, I* Low byte of length of command string* I
far *mcb_outlenhi, I* High byte of length of command string* I
far *mcb_outbuf, I* Buffer in 916 for commands* I
far *mcb_inflg, I* Set TRUE by 916 when response is ready* I
far *mcb _inlenlo, I* Low byte of length of response string *I
far *mcb _inlenhi, I* High byte of length of response string *I
far *mcb_inbuf; I* Buffer in 916 for responses"' I

I*** External variables found in user interface modules. ***I
extern float r1d_ctime;
extern float r2d_ctime;
extern float tomo_ctime;
extern float tomo_thd;

/***Function InitEverything *"'*I
/***Initializes all flags, mea mailbox pointers, the PC23 Indexer ***I
I*** card, and the MCA board. "'**I
void InitEverything()
{

int result;
char cmdSbing[SO],

resp[S12],
per_resp[512];

I* Make sure the PC23 is alive and well *I
if ((result= Initialize())< 0)

www.manaraa.com

}

printf("Can't Initialize the PC23\n");
printf("result = %d\n", result);
exit(-1);

I* Initialize pointers *I
mcb_outflg =(char far *)OUTFLG;
mcb_test =(char far *)TEST;
mcb_outlenlo =(char far *)OUTLENLO;
mcb_outlenhi =(char far *)OUTLENHI;
mcb _outbuf = (char far *)OUTBUF;
mcb_inflg =(char far *)INFLG;
mcb_inlenlo =(char far *)INLENLO;
mcb_inlenhi =(char far *)INLENHI;
mcb_inbuf = (char far *)INBUF;

mcb =(unsigned char)(DATAMCB -1);
(void)outportb(Ox292, mcb);

92

I*** Initialize the 916 mea data acquisition board and then set ••• I
I*** the gain_ conversion for the mea board to MAXCHAN + 1 ***I
sprintf(cmdString, "initialize");
if (mbxio(cmdString, resp, per_resp) == -1)
{

}

printf("ERROR: the command string initialize returned an error!\n");
printf("resp = %s, per_resp = %s\n", resp, per_resp);
exit(l);

sprintf(cmdString, "set_gain_conversion %d", (MAXCHAN +I));
if (mbxio(cmdString, resp, per_resp) == -1) ·
{

}

printf("ERROR: set_gain_conversion returned an error!\n");
printf("resp = %s, per_resp = %s\n", resp, per_resp);
exit(l);

I*** Initialize all flags to defaults*** I
rot_flag = FALSE;
Zflag = FALSE;
Live_Time_Flag =TRUE,
First_Acq = FALSE,
redo_flag =FALSE,
mul t_fact= 1;

} I*** end of InitEverything ***I

www.manaraa.com

I*** cls function : ~lears the screen. ***I
void cis()
{

union REGS r;

r.h.ah = 6;
r.h.al = 0;
r.h.ch = 0;
r.h.cl = 0;
r.h.dh = 24;
r.h.dl = 79;
r.h.bh = 7;
int86(0x10, &r, &r);

} I*** end of cis ***I

93

I** I
I*************************** Function: tomo_scan ****************************I
I** I
I*** This function implements the tomographic scan. It is hard coded at ***I
I*** this time to use theta for it's rotational axis. It scans linearly ***I
I*** in one direction, rotates one theta axis delta value, then scans ***I
I*** in the reverse linear direction, rotates again and continues for a ***I
I**• total of (num_X_moves * num_theta_steps) moves. ***I
I**• If a multiple energy bin tomo scan is chosen, then this function ***I
I*** writes the multiple energy bin data to num_bins number of files. ***I
I**• The file names for these files are determined as follows. Use all ***I
I*** all characters of the original file name up to the '.' and extension ***I
I*** append on an extension of 'en#', where#= the energy bin number ***I
I**• (0 to num_bins-1). Example: if the user types in an output file name*** I
I**• of "ceramic.grd", for the total channel count data, then the energy ***I
1.,..,.,. bin file names for 3 bins would be: ceramic.enO, ceramic.enl, and ***I
I*** ceramic.en2 (currently we are limited to ten energy bins). .,..,.,. I
I*** Parameters: Pass the two axis numbers of the axis to use for scan. ***I
void tomo_scan(char axisl, char axis2)

- {

register int i, j, k;
char Xcmd[80],

XcmdRev[SO],
thetaCmd[80],
thetaCmdRev[80],
callfile[20],
chbuffer[20],
X_ptr[20],
Theta_ptr[20],
ch,
*p;

int evenFlag = F AISE,
testCh,
files_open,

www.manaraa.com

X_index = num_X_moves,
ii,
jj,
kk;

FILE *outTemp,
*fp[lO],
*use full;

fpos _t *pos;

fileName= tomo;
count_ time= tomo_ctime;
threshold= tomo_thd; ·
ans = 2;

if ((param[O][l]-param[O][O])!=O.O)
{

Zflag = FALSE;
}
else if ((param[2][1]-param[2](0])!=0)
{

Zflag = TRUE;
}

rot_flag = TRUE;
if (Zflag)
{

94

num_Z_moves = (int)(ceil((fabs(param[2][1]-param[2][0]))1param[2)[2]));
Z_steps_per_move = (unsigned long)(param[2][2] I INCHES_PER_STEP);

}
else
{

X_steps_per_move = (unsigned long)(param[0][2] I INCHES_PER_STEP);
num_X_moves = (int)(ceil((fabs(param[O][l]-param[O][O]))Iparam[0][2]));

}

num_theta_steps = (int)(ceil((fabs(param[3][1]-param[3][0]))1param[3][2]));
theta_steps_per_move =(unsigned long)(param[3][2] I DEGREES_PER_STEP);

if ((param[O][l]-param[O][O]) >= 0) ·
{

}

Xdir = '+'; I*** Right ***I
XdirRev = '-'; I*•* Left,.,.,. I

else
{

Xdir = '-'; 1••• Left ,.,..,.. I
XdirRev = '+'; 1••• Right,.,.,. I

}

if ((param[3][1]-param[3][0]) >= 0)
{

www.manaraa.com

}

thetaDir = '+'; I*** CCW ***I
thetaDirRev = '-'; I*** CW ***I

else
(

}

thetaDir = '-'; I*** CCW ***I
thetaDirRev ='+';I*** CW ***I

X_index = num_X_moves;
insure_legal_file_nameO;

95

one_tomo_scan('2'); I**• Do one extra scan angle at large theta angle,.,..,. I

window(45,15,79,16);
gotoxy(l,l);
textcolor(LIGHTGRA Y);
textbackground(RED);
cprintf("lndices __ Photon Count\r \n");

ultoa(X_steps_per_move, X_ptr, 10);
ultoa(theta_steps_per_move, Theta_ptr, 10);

sprintf(Xcmd, "%s%s %sA %f %sV%f %s%s%s %s%s%c %s%s", X_AXIS,
MOTOR_RESOLUTION, X_AXIS, param[0][4], X_AXIS, param[0)[3],
X_AXIS, DISTANCE, X_ptr, X_AXIS, DIR_DEF, Xdir, X_ AXIS, GO);

sprintf(XcmdRev, "%s%s %sA %f %sV%f %s%s%s %s%s%c %s%s", X_AXIS,
MOTOR_RESOLUTION, X_AXIS, param[0][4], X_AXIS, param[0][3],
X_AXIS, DISTANCE, X_ptr, X_AXIS, DIR_DEF, XdirRev, X_AXIS, GO);

sprintf(thetaCmd, "%s%s %sA %f %sV%f %s%s%s %s%s%c %s%s", THETA_AXIS,
MOTOR_RESOLUTION, THETA_AXIS, param[3][4], THETA_AXIS, param[3][3],
THET A_AXIS, DISTANCE, Theta_ptr, THET A_AXIS, DIR_DEF, thetaDir,
THET A_AXIS, GO);

sprintf(thetaCmdRev, "%s%s %sA %f %sV%f %s%s%s %s%s%c %s%s", THET A_AXIS,
MOTOR_RESOLUTION, THETA_AXIS, param[3][4], THETA_AXIS, param[3][3],
THET A_AXIS, DISTANCE, Theta_ptr, THETA_ AXIS, DIR_DEF, thetaDirRev,
THET A_AXIS, GO);

allocate_ Temp();

#ifdef DEBUG
check_heap();
traverse_heap();

#end if

if ((outTemp = fopen("tempFile.grd", "w")) == NULL)
(

www.manaraa.com

}

96

printf("fopen of temporary output file tempFile.grd failed!!\ n");
exit(O);

fprintf(outTemp, "DSAA \n%d %d \n", num_X_moves+ 1, num_theta_steps);
fprintf(outTemp, "%f %f\n%f %f\n", Xmin, Xmax,

(thetaMiniDEGREES_PER_RADIAN), (thetaMaxiDEGREES_PER_RADIAN));
fdose(outTemp);

window(45,16,79,24);
gotoxy(1,1);
textcolor(LIGHTGRA Y);
textbackground(RED);

I** I
I********* Beginning of main loop for tomo _scan *********I
I** I

again: for (i=O; i<= num_theta_steps; i++)
{

for (j=O; j<= num_X_mov~s; j++)
(

if ((i==O) && (j==O))
First_Acq = TRUE;

else
First_Acq = FALSE;

if ((i % 2) == 0)
evenFlag =TRUE;

else
evenFlag =FALSE;

I*** acquire photon count data for count_ time sees. ***I
if (j > 0) I*** move sample in the X dir if not first scan ***I
(

if (evenFlag) I*** if i is even (even theta increment) ***I
(

WriteCmd(Xcmd);
if (wait_for_mover()!=O)

printf("***ERROR: timeout occurred in wait_for_mover!!\n");
printf(''Program saving data and exiting now-BYE \n");
if (i == 0)

num_X_moves = j + 1;
num_theta_steps = i + 1;
files_ open = flushall();
if (mult_bins_flag)

for (jj=O; jj<num_bins; jj++)
fclose(fp[jj]);

write_2D _to_file();

www.manaraa.com

}

free MemO;
exit(O);

}
else
{

WriteCmd(XcmdRev);
if (wait_for_moverO!=O)
{

97

printf("***ERROR: timeout occurred in wait_for_mover!!\n");

}

printf(''Program saving data and exiting now-BYE \n");
if (i == 0)

num_X_moves = j + 1;
num_theta_steps = i + 1;
files_ open = flushall();
if (mult_bins_flag)

for (jj=O; jj<num_bins; jj++)
fclose(fp[jj]);

write_2D _to_file();
free MemO;
exit(O);

I*** end else i% 2 ,.,.,. I
} I*** end if j > 0 ,.,.,. I

if (evenFlag)
{

if ((i >= 0) && (j >= 0) && (j <= num_X_moves>.
&& (i <= num_theta_steps))

{

DataTemp[i][j] = acq_data();
}

else
{

}
}

printf(''Index: %d, %d into temp array not legal!\n", i, j);
write_2D _to_file();
freeMem();
exit(O);

else
{
if ((X_index >= 0) && (i >= 0) && (X_index <= num_X_moves)

&& (i <= num_theta_steps))
{

· DataTemp[i][X_index] = acq_dataO;
X_ index-;

}
else

www.manaraa.com

98

printf("lndex: %d, %d into temp array not legal!\n",

}
}

i, X_index);
write_2D _to_file();
free MemO;
exit(O);

textcolor(LIGHTGRA Y);
textbackground(RED);
if (evenFlag)
(.

if (mult_bins_flag)
cprintf("%3d %3d %71u %7lu %7lu\r\n", i, j,

bin_data[O][j], bin_data[l][j),
bin_data[2][j]);

else
cprintfr%3d %3d %7lu \r\n", i, j, DataTemp[i][j]);

else
(

if (mult_bins_flag)
cprintf("%3d %3d %7lu %7lu %7lu\r\n", i,

X_index+ 1, bin_data[O][j),
bin_data[l][j], bin_data[2][j]);

else
cprintf("%3d %3d %7lu\r\n", i, X_index+1,

DataTemp[i][X_index+ 1]);

if (kbhit())
{

if ((testCh = getch()) ==ESC)
{

}
}

printf(''Program saving data and exiting now-BYE \n");
if (i == 0)

num_X_moves = j + 1;
num_theta_steps = i + 1;
if (mult_bins_flag)

for (jj=O; jj<num_bins; jj++)
fclose(fp[jj]);

write_2D _to_file();
freeMem();
exit(O);

if (redo_flag)
break;

www.manaraa.com

99

if (mult_bins_flag)
{

for (jj=O; jj<num_bins; jj++)
{

for (ii=O,p=fileName; (*p!='.')&&(*p!='\O');p++,ii++)
{

callfile[ii] = *p;
if ({*(p + 1) == '.')&&(*(p+l)!='\0'))

callfile[ii+ 11 = '\0';
} I*** end for ii.*** I
sprintf(chbuffer, "%s.en%d", callfile, jj);
if (First_Acq)
{

if ((fp[jj] = fopen(chbuffer, "w")) ==NULL)
{

printf("fopen of output file %s failed!!\n", chbuffer);
}
find_limits(ans, num_theta_steps, num_X_moves);
fprintf(fp[jj], "DSAA \n%d %d\n", num_X_moves+1,

num_theta_steps+ 1);
fprintf(fp[jj], "%f %f\n%f %f\n", fabs(param[O][O]),

fabs(param[O][l]),
(fabs(param[3][0])IDEGREES_PER_RADIAN),
(fabs(param[3][1])IDEGREES_PER_RADIAN));

fprintf(fp[jj], "%lu %lu \n", eLimits[jj][O],
eLimits[jj][1]);

} I*** end if First_Acq .,..,..,. I
} I*** end for jj ***I

} I*** end if mult_bins_flag ***I

num_points++;

} l*<=======================endforj============================*l

if (mult_bins_flag)
{

I*** Write out the current energy bin counts. ***I
I*** Write out each projection's (one line's) ***I
I*** energy bin photon counts to each file. .,..,..,. I
I*** Then close all files. There should be num_bins ***I
I*** files. ,..,..,. I
for (jj=O; jj<num_bins; jj++)
{

}

for (kk=O; kk<=num_X_moves; kk++)
fprintf(fp[jj), "% lOiu", bin_data[jj][kk]);

fprintf(fp[jj], "\n");

files_open = flushall();
}

www.manaraa.com

num_points = 0;
if (redo_flag)

break;

if (evenFlag)

100

X_index = num_X_moves; I*** reset X_index for each even ***I
I*** move of the theta axis ***I

if (i<num_theta_steps)
{

WriteCmd(thetaCmd);

}

if (wait_for_mover()!=O)

printf("***ERROR: timeout occurred in wait_for_mover!!\n");
printf("Program saving data and exiting now-BYE \n");
if (i == 0)

num_X_moves = j + 1;
num_theta_steps = i + 1;
files_ open = flushall();
if (mult_bins_flag)

for (jj=O; jj<num_bins; jj++)
fclose(fp[jj]);

write_2D _to_file();
freeMem();
exit(O);

I** I
I*•• Write counts to temporary file after each line scan is complete. *I
I** I
if ((outTemp = fopen("tempFile.grd", "a")) == NULL)
{

}

printf("fopen of temporary output file tempFile.grd failed!!\n");
exit(O);

if (i < 1)
{

find_limits(ans, i, num_X_moves);
if (fgetpos(outTemp, pos) != 0)

printf("******************** fgetpos error!! ****************\n");
fprintf(outTemp, "%lu %lu \n", Min, Max);

}
else
{

find_limits(ans, i, num_X_moves);
}

if (i == num_theta._steps-1)

www.manaraa.com

101

(

if (fsetpos(outTemp, pos) !=0)
printf("******************* fsetpos error!! *****************\n");

fprintf(outTemp, "%lu %lu\n", Min, Max);
}

for (k=O; k<=num_X_moves; k++)
(

fprintf(outTemp, "% 12lu", DataTemp[i][k]);
}

fprintf(outTemp, "\n");

fclose(outTemp);

} l"'<==========================endfori=============================*l

for (jj=O; jj<num_bins; jj++)
fclose(fp[jj]);

if (redo_flag)
goto again;

I*** I
I*************** Reposition the sample at the origin ***************I
I*** I
if (evenFlag)
(

I*** Need to reposition along both axis*** I
ultoa((unsigned long)(ceil((num_X_moves*param[0][2])IINCHES_PER_STEP)),

X_ptr, 10);

sprintf(Xcmd, "%s%s %sA %f %sV%f %s%s%s %s%s%c %s%s", X_AXIS,
MOTOR_RESOLUTION, X_AXIS, param[0][4], X_AXIS, param[0][3],
X_AXIS, DISTANCE, X_ptr, X_AXIS, DIR_DEF, Xdir, X_AXIS, GO);

sprintf(XcmdRev, "%s%s %sA %f %sV%f %s%s%s %s%s%c %s%s", X_AXIS,
MOTOR_RESOLUTION, X_AXIS, param[0][4], X_AXIS, param[0](3],
X_ AXIS, DISTANCE, X_ptr, X_ AXIS, DIR_DEF, XdirRev, X.:._AXIS, GO);

WriteCmd(XcmdRev);
if (wait_for_mover()!=O)
{

}

printf("***ERROR: timeout occurred in wait_for_mover!!\n");
printf("However, tomo_scan done anyway!!!\n");

I*** Almost always reposition the theta axis ***I
ultoa((unsigned long)(ceil(360.0-

((num_theta_steps*param[3](2])IDEGREES_PER_STEP))), Theta_ptr, 10);

www.manaraa.com

102

sprintf(thetaCmd, "%s%s %sA %f %sV%f %s%s%s %s%s%c %s%s", THET A_AXIS,
MOTOR_RESOLUTION, THETA_AXIS, param[3][4], THETA_AXIS,
param(3][3], THETA_AXIS, DISTANCE, Theta_ptr, THETA_AXIS, DIR_DEF,
thetaDir, THET A_AXIS, GO);

ultoa((unsigned long)(ceil((num_theta_steps*param[3][2])
IDEGREES_PER_STEP)), Theta_ptr, 10);

sprintf(thetaCmdRev, "%s%s %sA %f %sV%f %s%s%s %s%s%c %s%s", THET A_AXIS,
MOTOR_RESOLUTION, THETA_AXIS, param[3][4], THETA_AXIS, param[3](3],
THETA_AXIS, DISTANCE, Theta_ptr, THETA_AXIS, DIR_DEF, thetaDirRev,
THETA_AXIS, GO);

if ((fabs(param[3][1]- param[3][0])) != 360.0)
{

if ((fabs(param[3][1]- param[3][0])) > 180.0) I***> 180 degrees*** I
{

I*** Rotate back to origin in same direction as tomo_scan. ***I
WriteCmd(thetaCmd);
if (wait_for_moverO!=O)
(

}

printf("***ERROR: timeout occurred in wait_for_mover!!\n");
printf("However, tomo_scan done anyway!!!\n");

I*** end of if thetaMax - thetaMin .,.,..,. I
else
(

I*** Rotate back to original position in opposite direction. ***I
WriteCmd(thetaCmdRev);

if (wait_ for _mover()! =0)
(

}

· printf("***ERROR: timeout occurred in wait_for_mover!!\n");
printf("However, tomo_scan done anyway!!!\n");

} I*** end of eJse theta.Max - thetaMin .,..,.,. I
}

if ((usefull = fopen("usefull.dat", "w")) ==NULL)
(.

}

printf("fopen of usefull.dat file failed!!\n");
exit(O);

fprintf(usefull, "enebin#_start __ end_\nu);
for (i=O; i<num_bins; i++)
(

fprintf(usefull, u%7d %9d %9d\n", i, ene_bins[i][O], ene_bins[i][l]);
}

fprintf(usefull, "enebin#_Min. ___ .Max __ \n");
for (i=O; i<num_bins; i++)
{

www.manaraa.com

103

fprintf(usefull,."%7d %10lu %10lu\n", i, eLimits[i][O), eLimits[i][l));
}
fclose(usefull);
cls();
write_2D _to_file();
exit(O);

} 1*---------- end of tomo_scan ------------*I

I*--* I
I* Function: two_D_scan -----------*I
I* *I
I*** This function implements the 20 scan operation. The two axis chosen*** I
I*** are selected by the user in the user interface section. At this time*** I
I*** any two of the following axis may be chosen: X, Z, and theta. ***I
I*** Currently there is no option for energy bin scans, this will be ***I
I*** implemented at a later date. ***I
void two_D _scan(char axisl, char axis2)
{

register int i, j, k;
char Xcmd[SO],

XcmdRev[SO],
Zcmd[80],
ZcmdRev[SO],
X_ptr[20],
Z_ptr[20],
ch;

int evenFlag = F AI.SE,
testCh,
files_open,

X_index = num_X_moves;
FILE *outTemp;

fileName = r2d;
count_ time= r2d_ctime;
threshold= tomo_thd;
ans = 4;
if ((param[2][1]-param[2][0])!=0.0)

Zflag=TRUE;
else

Zflag=FALSE;
· rot_flag=FALSE;

num_Z_moves = (int)((fabs(param[2)[1]- param[2][0])) I param[2][2]);
Z_steps_per_move =(unsigned long)(param[2][2] I INCHES_PER_STEP);
X_steps_per_move = (unsigned long)(param[0][2] I INCHES_PER_STEP);
num_X_moves = (int)((fabs(param[O][l]- param[O][O])) I param[0][2]);

if ((param[O][l]-param[O][O]) > 0)
(

www.manaraa.com

}

Xdir = '+'; I*** Right ***I
XdirRev = '-'; I*** Left*** I

else
{

Xdir = '-'; I*** Left ***I
XdirRev = '+'; I*** Right*** I

}

if ((param[2][1]-param[2][0]) > 0)
{

Zdir = '+'; I*** Down ***I
ZdirRev = '-'; I*** Up ***I

}
else
{

}

Zdir = '-'; /***Up ***I
ZdirRev = '+'; /***Down*** I

insure_Iegal_file_name();

window(45,15,79, 16);
gotoxy(l, 1);
textcolor(LIGHTGRA Y);
textbackground(RED);
cprintf("lndexes Photon Count\r\n");

ultoa(X_steps_per_move, X_ptr, 10);
ultoa(Z_steps_per_move, Z_ptr, 10);

104

sprintf(Xcmd, "%s%s %sA %f %sV%f %s%s%s %s%s%c %s%s", X_AXIS,
MOTOR_RESOLUTION, X_AXIS, param[0][4], X_AXIS, param[0][3],
X_AXIS, DISTANCE, X_ptr, X_AXIS, DIR_DEF, Xdir, X_ AXIS, GO);

sprintf(XcmdRev, "%s%s %sA %f %sV%f %s%s%s %s%s%c %s%s", X_AXIS,
MOTOR_RESOLUTION, X_AXIs, param[0][4], X_AXIS, param[0][3],
X_ AXIS, DISTANCE, X_ptr, X_AXIS, DIR_DEF, XdirRev, X_AXIS, GO);

sprintf(Zcmd, "%s%s %sA %f %sV%f %s%s%s %s%s%c %s%s", Z_AXIS,
MOTOR_RESOLUTION, Z_AXIS, param[2][4], Z_AXIS, param[2][3],
Z_AXIS, DISTANCE, Z_ptr, Z_AXIS, DIR_DEF, Zdir, Z_AXIS, GO);

sprintf(ZcmdRev, "%s%s %sA %f %sV%f %s%s%s %s%s%c %s%s", Z_AXIS,
MOTOR_RESOLUTION, Z_AXIS, param[2][4], Z_AXIS, param[2][3],
Z_AXIS, DISTANCE, Z_ptr, Z_AXIS, DIR_DEF, ZdirRev, Z_AXIS, GO);

#ifdef DEBUG
printf("Xcmd = %s \n", Xcmd);

www.manaraa.com

printf("Zcmd = %s\n", Zcmd);
#end if

105

I""'""'"" Need to setup commands to the mea board(s) as well ""'""'""'I

allocate_ TempO;

#ifdef DEBUG
check_heap();
traverse_hea pO;

#end if

if ((outTemp = fopen("tempFile.grd", "w")) == NULL)
{

}

printf("fopen of temporary output file tempFile.grd failed!!\n");
exit(O);

fprintf(outTemp, "DSAA \n%d %d\n", num_X_moves, num_Z_moves);
fprintf(outTemp, "%f %f\n%f %f\n", Xmin, Xmax, Zmin, Zmax);
fclose(outTemp);

window(45,15,79,24);
gotoxy(l,l);

againl: for (i=O; i<= num_Z_moves; i++)
{

for (j=O; j<= num_X_moves; j++)
{

if ((i==O) && (j==O))
First_Acq =TRUE;

else
First_Acq = FALSE;

if ((i% 2) == 0)
evenFlag =TRUE;

else
evenFlag = FALSE;

/""'""'""' acquire photon count data for count_ time sees. ""'""'""'I
if (j > 0) I""""'"" move sample in the X dir if not first scan ••• I
{

if (evenFlag) I*** if i is even (even Z increment) ""'"""""I
{

WriteCmd(Xcmd);
if (wait_ for _mover()! =0)
{

printf("""'""'""'ERROR: timeout occurred in wait_for_mover!!\n");
printf("Program saving data and exiting now-BYE \n");

www.manaraa.com

if (i == 0)
num_X_moves = j + 1;

num_Z_moves = i + 1;
files_open = flushall();

I*** if (mult_bins_flag)
for (jj=O; jj<num_bins; jj++)

fclose(fp[jj]); ***I
write_2D _to_file();
free MemO;
exit(O);

}
}
else
(

WriteCmd(XcmdRev);
if (wait_ for _mover()!=O)
(

106

printf("***ERROR: timeout occurred in wait_for_mover!!\n");
printf(''Program saving data and exiting now-BYE \n");
if (i == 0)

num_X_moves = j + 1;
num_Z_moves = i + 1;
files_ open = flushall();

I*** if (mult_bins_flag)

}

for (jj=O; jj<num_bins; jj++)
fclose(fp[jj]); ***I

write_2D _to_file();
freeMem();
exit(O);

t••• end else i % 2 ***I
} I*** end if j > 0 ***I

if (evenFiag)
{

if ((i >= 0) && (j >= 0) && (j <= num_X_moves)
&& (i <= num_Z_moves))

(
DataTemp[i][j] = acq_data();

}

else
{

printf("Index: %d, %d into data array not legal!\n", i, j);
exit(O);

}
}
else
(

if ((X_index >= 0) && (i >= 0) && (X_ index <= num_X_moves)

www.manaraa.com

&& (i <= num_Z_moves))

X_index--;
DataTemp[i][X_index] = acq_data();

}
else
(

107

printf("lndex: %d, %d into data array not legal!\n", i,
X_index);

exit(O);
}

}

textcolor(LIGHTGRA Y);
textbackground(RED);
if (evenFiag)

cprintf("%d %d % 12lu \r\n", i, j, DataTemp[i][j]);
else
cprintf("%d %d %12lu\r\n", i, X_index,

Data Temp[i] [X_index]);

if (kb hi tO)
(

if ((testCh = getch()) == ESC)
(

if (i == 0)
num_X_moves = j + 1;

num_Z_moves = i + 1;
1,..u if (mult_bins_flag)

for (jj=O; jj<num_bins; jj++)
fclose(fp[jj]); ,..,..,.. I

write_2D _to_file();
printf("Program saving data and exiting now, BYE \n:'>;
freeMem();
exit(O);

}
}

if (redo_flag)
break;

} /,..,..,.. end for j ,..,..,.. I

if (evenFlag)
X_index = num_X_moves; 1,..,..,.. reset X_index for each even .,... I

1,..,..,.. move of the Z axis .,..,.. I

if (i < num_Z_moves)
(

WriteCmd(Zcmd);

www.manaraa.com

if (wait_for_mover0!=0)
{

108

printf("***ERROR: timeout occurred in wait_for_mover!!\n");
printf("Program saving data and exiting now-BYE \n");
if (i == 0)

num_X_moves = j + 1;
num_Z_moves = i + 1;
files_ open = flushall();

I*** if (mult_bins_flag)

}

for (jj=O; jj<num_bins; jj++)
fclose(fp[jj]); I

write_2D _to_file();
freeMein();
exit(O);

1 .. 1
I** Write counts to temporary file after each line scan is complete.** I
1 .. 1
if ((outTemp = fopen("tempFile.grd", "a")) == NULL)
{

}

printf("fopen of temporary output file tempFile.grd failed!!\n");
exit(O);

if (i < 1)
{

find_limits(ans, i, num_X_moves);
fprintf(outTemp, "%lu %lu \n", Min, Max);

}
else
{

find_limits(ans, i, num_X_moves);
}

for (k=O; k<=num_X_moves; k++)
(

fprintf(outTemp, "% 12lu", DataTemp[i][k]);
}

fprintf(outTemp, "\n");

fclose(outTemp);

if (redo_flag)
break;

I*** end for i ***I

www.manaraa.com

109

if (redo_flag)
· go to again 1;

I**~************************ I
I*************** Reposition the sample at the origin*************** I
I*** I
if (evenF1ag)
{

I*** Need to reposition along both axis*** I
ultoa((unsigned long)((fabs(param[0][1]-param[O][O]))IINCHES_PER_STEP), X_ptr, 10);

sprintf(Xcmd, "%s%s %sA %f %sV%f %s%s%s %s%s%c %s%s", X_ AXIS,
MOTOR_RESOLUTION, X_AXIS, param[0][4], X_AXIS, param[0][3],
X_ AXIS, DISTANCE, X_ptr, X_AXIS, DIR_DEF, Xdir, X_AXIS, GO);

sprintf(XcmdRev, "%s%s %sA %f %sV%f %s%s%s %s%s%c %s%s", X_AXIS,
MOTOR_RESOLUTION, X_AXIS, param[0][4], X_AXIS, param[0][3],
X_AXIS, DISTANCE, X_ptr, X_ AXIS, DIR_DEF, XdirRev, X_AXIS, GO);

WriteCmd(XcmdRev);
if (wait_for_mover0!=0)
{

printf("***ERROR: timeout occurred in wait_for_mover!!\n");
printf("However, two_D _scan done anyway!!!\n");

}
}

I*** Always reposition the Z axis ***I
ultoa((unsigned long)((fabs(param[2][1]-param[2][0]))IINCHES_PER_STEP),

Z_ptr, 10);
sprintf(Zcmd, "%s%s %sA %f %sV%f %s%s%s %s%s%c %s%s", Z_AXIS,

MOTOR_RESOLUTION, Z_AXIS, param[2][4], Z_AXIS, param[2][3],
Z_AXIS, DISTANCE, Z_ptr, Z_AXIS, DIR_DEF, Zdir, Z_AXIS, GO);

sprintf(ZcmdRev, "%s%s %sA %f %sV%f %s%s%s %s%s%c %s%s", Z_AXIS,
MOTOR_RESOLUTION, Z_AXIS, param[2][4], Z_AXIS, param[2][3],
Z_AXIS, DISTANCE, Z_ptr, Z_AXIS, DIR_DEF, ZdirRev, Z_AXIS, GO);

WriteCmd(ZcmdRev);
if (wait_for_moverO!=O)
{

printf("***ERROR: timeout occurred in wait_for_mover!!\n");
printf("However, two_D _scan done anyway!!!\n");

}

write_2D _to_file();

} 1*------- end of two_D _scan -----·*1

I* Function: one_D _scan *I
/*------1-D scan and acquisition-------* I

www.manaraa.com

110

I*** This function implements the lD scan operation. The axis chosen ***I
I*** is selected by the user in the user interface section. At this time ***I
I*** any one of the following axis may be chosen: X, Z, or theta. ***I
I*** Currently there is no option for energy bin scans, this will be ***I
I*** implemented at a later date. ***I
void one_D _scan(char axisl)
{

register int i, j;
char Xcmd [80],

XcmdRev[80],
X_ptr[20],
Zcmd[80],
ZcmdRev[80],
Z_ptr[20],
thetaCmd[80],
thetaCmdRev[80],
Theta_ptr[20],
ch;

int testCh,
end for,
endforTemp;

float delta Val;
FILE *outTemp;

fileName = rld;
count_ time= rld_ctime;
threshold= tomo_thd;
ans = 3;
if ((param[2][1]-param[2][0])!=0.0)

Zflag=TRUE;
else

Zflag=FALSE;
rot_flag=F ALSE;
if (Zflag)
(

num_Z_moves = (int)((fabs(param[2][1] - param[2][0])) I param[2][2]);
Z_steps_per_move =(unsigned long)(param[2][2] I INCHES_PER_STEP);

}
else
{

}

X_steps_per_move =(unsigned long)(param[0][2] I INCHES_PER_STEP);
num_X_moves = (int)(ceil((fabs(param[O][l 1-param[O][O])) I param[0](2]));

if ((param[O][l]-param[O][O]) > 0)
{

}

Xdir = '+'; I*** Right .,..,..,. I
XdirRev = '-'; I*** Left **• I

else

www.manaraa.com

}

Xdir = '-'; I*** Left ***I
XdirRev = '+'; I*** Right*** I

if ((param[2][1]-param[2][0]) > 0)
{

}

Zdir = '+'; I*** Down ***I
ZdirRev = '-'; I*** Up ***I

else
{

}

Zdir = '-'; I*** Up ***I
ZdirRev = '+'; /***Down ••• I

insure_legal_file_name();

window(45,15,79,16);
gotoxy(l, 1);
textcolor(LIGHTGRA Y);
textbackground(RED);
for (i=O;i<S;i++)
{

cprintf(" \r\n");
}
gotoxy(l, 1);
cprintf("Index __ Photon Count \r\n");

if (ans != 1)
allocate_ TempO;

Ill

if ((outTemp = fopen("tempFile.grd", "w")) == NULL)
(

}

printf("fopen of temporary output file tempFile.grd failed!!\n");
exit(O);

fclose(outTemp);

if ((param[0][1]-param[O][O]) != 0)
{

ultoa(X_steps_per_move, X_ptr, 10);
sprintf(Xcmd, "%s%s %sA %f %sV%f %s%s%s %s%s%c %s%s", X_AXIS,

MOTOR_RESOLtrfiON, X_AXIS, param[0][3], X_AXIS, param[0][3],
X_AXIS, DISTANCE, X_ptr, X_AXIS, DIR_DEF, Xdi~, X_AXIS, GO);

sprintf(XcmdRev, "%s%s %sA %f %sV%f %s%s%s %s%s%c %s%s", X_AXIS,
MOTOR_RESOLUTION, X_AXIS, param[0][4], X_AXIS, param[0][3],

www.manaraa.com

}

112

X_AXIS, DISTANCE, X_ptr, X_AXIS, DIR_DEF, XdirRev, X_AXIS, GO);
endfor = num_X_moves;
endforTemp = (int)(num_X_moves * 0.10);
delta Val= deltaX;

else
(

}

ultoa(Z_steps_per_move, Z_ptr, 10);
sprintf(Zcmd, "%s%s %sA %f %sV%f %s%s%s %s%s%c %s%s", Z_AXIS,

MOTOR_RESOLUTION, Z_AXIS, param{0][3], Z_AXIS, param[0][3],
Z_AXIS, DISTANCE, Z_ptr, X_AXIS, DIR_DEF, Xdir, X_AXIS, GO);

sprintf(ZcmdRev, "%s%s %sA%f %sV%f %s%s%s %s%s%c %s%s", Z_AXIS,
MOTOR_RESOLUTION, Z_AXIS, param[0][4], Z_AXIS, param[0][3],
Z_AXIS, DISTANCE, Z_ptr, Z_AXIS, DIR_DEF, ZdirRev, Z_AXIS, GO);

endfor = num_Z_moves;
endforTemp = (int)(num_Z_moves * 0.10);
delta Val= deltaZ;

if (ans == 1)
end for-;

window(45,16,79,24);
gotoxy(l,l);

again2: for (i=O; i<= endfor; i++)
(

if 0==0)
First_Acq = TRUE;

else
First_Acq = FALSE;

if ((i > 0) I I (ans == 1))
/***move sample in the appropriate dir if not first scan,..,..,.. I

if ((param[O][l]-param[O][O]) != 0) ·
(

WriteCmd(Xcmd);
if (wait_for_mover0!=0)
(

printf("***ERROR: timeout occurred in wait_for_mover!!\n");
· printf("Program saving data and exiting now-BYE \n");
num_X_moves = i + 1;

;••• if (mult_bins_flag)
for (jj=O; jj<num_bins; jj++)

fclose(fp[jj]); ,.....,.. I
write_l D _to_file();
free MemO;

www.manaraa.com

exit(O);
}

}
else
(

WriteCmd(Zcmd);
if (wait_for_moverO!=O)
(

113

printf("***ERROR: timeout occurred in wait_for_mover!!\n");
printf("Program saving data and exiting now-BYE \n");
num_X_moves = i + 1;

I*** if (mult_bins_flag)

}

}
}

for (jj=O; jj<num_bins; jj++)
fclose(fp[jj]); ***I

write_l D _to_file();
freeMem();
exit(O);

if (endforTemp < 1)
endforTemp = 1;

1••• If ans != 1, acquire photon count data for count_ time sees. ••• I
if (ans != 1)
(

DataTemp[O][i] = acq_data();

if (((i% endforTemp) == 0) && (i != 0))
(

1••• Write current data to temporary file. ••• I
if ((outTemp = fopen("tempFile.grd", "a"))== NULL)
(

}

printf("fopen of temp output file tempFile.grd failed!!\n");
exit(O);

for (j=i-endforTemp; j<=i; j++)
(

fprintf(outTemp, "%10f, %12lu", (j • delta Val),
DataTemp[O][j]);

fclose(outTemp);

} ;••• end of if i % endforTemp ••• I

textcolor(LIGHTGRA Y);
textbackground(RED);

www.manaraa.com

114

cprintf("%d %10lu\r\n", i, DataTemp[O][i]);

if (kbhit())
{

if ({testCh = getch()) ==ESC)
{

if (Zflag) num_Z_moves = i+ 1;
else num_X_moves = i+ 1;
write_1 D _to_file();
printf("Program saving data and exiting now, BYE \n");
free MemO;
exit(O);

} I*** end of if testCh =***I
} I*** end of if kbhit ***I

} I*•* end of if ans != 1 ••• I

if (redo_flag)
break;

} I*** end of for i ***I

if (redo_flag)
goto again2;

if (ans != 1)
(

if (!Zflag)
(

I*** Reposition the sample to it's original position. ***I
ultoa((unsigned long)(ceil((num_X_moves*param[OJ[2])

IINCHES_PER_STEP)), X_ptr, 10);
sprintf(XcmdRev, "%s%s %sA%f %sV%f %s%s%s %s%s%c %s%s", X_AXIS,

MOTOR_RESOLUTION, X_AXIS, param[0][4], X_AXIS, param[0][3],
X_AXIS, DISTANCE, X_ptr, X_AXIS, DIR_DEF, XdirRev, X_AXIS,
GO);

#ifdef DEBUG .
printf("\n\n(Xmax- Xmin)IINCHES_PER_STEP = %f\n",

(Xmax- Xmin) IINCHES_PER_STEP);
printf("\n \nafter casting to a long, it= %ld\n",

(long)((Xmax- Xmin)IINCHES_PER_STEP));

printf("While X_ptr = %s\n", X_ptr);
#end if

WriteCmd(XcmdRev);
if (wait_for _mover()!=O)
(

printf("***ERROR: timeout occurred in wait_for_mover!!\n");

www.manaraa.com

115

printf("Program one_D_scan done anyway!!!\n");
}

}

else
{

ultoa((unsigned long)(ceil((num_Z_moves*param[2][2])
/INCHES_PER_STEP)), Z_ptr, 10);

sprintf(ZcmdRev, "%s%s %sA%f %sV%f %s%s%s %s%s%c %s%s", Z_AXIS,
MOTOR_RESOLUTION, Z_AXIS, param[0][4], Z_AXIS, param[0][3],
Z_AXIS, DISTANCE, Z_ptr, Z_AXIS, DIR_DEF, ZdirRev, Z_AXIS,
GO);

#ifdef DEBUG
printf("\n\n(Zmax- Zmin)/INCHES_PER_STEP = %f\n",

(Zmax- Zmin)/INCHES_PER_STEP);
printf("\n \nafter casting to a long, it= %ld\n",

(long)((Zmax - Zmin) /INCHES _PER_STEP));

printf("While Z_ptr = %s\n", Z_ptr);
#end if

WriteCmd(ZcmdRev);
if (wait_for_moverO!=O)
{

}

printf(''***ERROR: timeout occurred in wait_for_mover!!\n");
printf("Program one_D_scan done anyway!!!!\n");

/**• end of if !Zflag ***I
} ;••• end of if ans != 1 ***I
write_1 D _to_file();

} /*••••••••**••••••• end of one_D _scan function •••••••••••******•**•***** I

/* Function: one_tomo_scan *I
f• 1-D scan and acquisition *I
;••* Move positioner to theta= (thetaMax-thetaMin)/2 + thetaMax **• I
j*•• Then do one linear scan at this angle, then move positioner ***I
/***back to original start position and start tomo scan!!! *•* I
/*** Example: If you are doing a 0 to 180 degree tomographic scan ***I
;••* then we move the positioner to 90+ 180=270 degrees for this *•• I
/**• initial linear scan. This allows us to obtain additional ***I
/*** useful data from an angle that we would not ordinarily get. ***I
void one_tomo_scan(char axisl)
{

register int i, j;
char Xcmd[80],

XcmdRev[80],
X_ptr[20],
Zcmd[80],

www.manaraa.com

ZcmdRev[SO],
Z_ptr[20],
thetaCmd[80],
thetaCmdRev[SO],
Theta_ptr[20],
temp File[SO],
ch;

int testCh,
end for,
endforTemp;

float delta Val;
FILE *outTemp;

strcpy(tempFile, fileName);
strcpy(fileName, "extra.dat");
count_time = tomo_ctime;
threshold= tomo_thd;

116

ans = 3; I*** temporarily make scan type 1 D "'"'"'I
Zflag=F ALSE;
rot_flag=F ALSE;
X_steps_per_move = (unsigned long)(param[0][2] I INCHES_PER_STEP);
num_X_moves = (int)(ceil((fabs(param[O][l]-param[O][O])) I param[0][2]));

if ((param[O][l]-param[O][O]) > 0)
{

Xdir = '+'; I*** Right ***I
XdirRev = '-'; I*** Left.,.,..,. I

}
else
{

Xdir = '-'; I*** Left .,.,..,. I
XdirRev = '+'; /"'**Right***/

}

insure_legal_file_name();

window(45,15,79,16);
textcolor(LIGHTGRA Y);
textbackground(RED);
cprintf("Index __ Photon Count\r\n");

if (ans != 1)
allocate_ Temp();

ultoa(X_steps_per_move, X_ptr, 10);
sprintf(Xcmd, "%s%s %sA%f %sV%f %s%s%s %s%s%c %s%s", X_AXIS,

MOTOR_RESOLUTION, X_AXIS, param[0][4], X_AXIS, param[0][3],
X_ AXIS, DISTANCE, X_ptr, X_AXIS, DIR_DEF, Xdir, X_AXIS, GO);

sprintf(XcmdRev, "%s%s %sA %f %sV%f %s%s%s %s%s%c %s%s", X~ AXIS,

www.manaraa.com

117

MOTOR_RESOLUTION, X_AXIS, param[0)[4], X_AXIS, param[0](3],
X_AXIS, DISTANCE, X_ptr, X_AXIS, DIR_DEF, XdirRev, X_AXIS, GO);

endfor = num_X_moves;
endforTemp = (int)(num_X_moves"' 0.10);
deltaVal = param[0][2];

ultoa((unsigned long)((fabs(param[3][1]-param[3][OJ) /2 +
param[3][1])/DEGREES_PER_STEP), Theta_ptr, 10);

sprintf(thetaCmd, "%s%s %sA %f %sV%f %s%s%s %s%s%c %s%s", THET A_AXIS,
MOTOR_RESOLUTION, THETA_AXIS, param[3][4], THETA_AXIS,
param[3][3], THET A_AXIS, DISTANCE, Theta_ptr,THETA_AXIS, DIR_DEF,
thetaDir, THETA_ AXIS, GO);

sprintf(thetaCmdRev, "%s%s %sA %f %sV%f %s%s%s %s%s%c %s%s", THET A_AXIS,
MOTOR_RESOLUTION, THETA_AXIS, param[3][4], THETA_AXIS,
param[3][3], THET A_AXIS, DISTANCE, Theta_ptr, THET A_AXIS, DIR_DEF,
thetaDirRev, THET A_AXIS, GO);

WriteCmd(thetaCmd);
if (wait_for_mover()!=O)
{

}

printf("***ERROR: timeout occurred in wait_for_mover.\n");
printf("Trying the theta axis big move for extra tomo scan!!!\n");
printf("Program exiting now-BYE, no data to save!!!!!\n");
freeMem();
exit(O);

if (ans == 1)
end for-;

window(45,16,79,24);
gotoxy(l,l);
textcolor(LIGH'rGRA Y);
textbackground(RED);

again2: for (i=O; i<= endfor; i++)
{

if 0==0)
First_Acq = TRUE;

else
First_Acq = FALSE;

if ((i > 0) I I (ans == 1))
/*** move sample in the appropriate dir if ~ot first scan*** I
{

WriteCmd(Xcmd);
if (wait_for_mover()!=O)
{

printf(''***ERROR: timeout occurred in wait_for_mover!!\n");

www.manaraa.com

num_X_moves = i + 1;
write_1D _to_file();

118

printf(''Program saving data and exiting now, BYE \n");
free MemO;
exit(O);

}
}

if (endforTemp < 1)
endforTemp = 1;

I**"" If ans != 1, acquire photon count data for count_ time sees. ,..,..,.. I
if (ans != 1)
{

DataTemp[O][i] = acq_dataO;
textcolor(LIGHTGRA Y);
textbackground(RED);
cprintf("%d %10lu\r\n", i, DataTemp[O][i]);

if (kbhit())
{

if ((testCh = getch()) ==ESC)
{

num_X_moves = i + 1;
write_1 D _to_file();
printf("Program saving data and exiting now, BYE \n");
free MemO;
exit(O);

} I,.,.,. end of if testCh = ,..,..,. I
} I*** end of if kbhit ***I

} I*** end of if ans != 1 ,.,.,. I

if (redo_flag)
break;

} I*** end of for i ,..,.,. I

if (redo _flag)
goto again2;

I*** Reposition the sample to it's original position.*** I
·ultoa((unsigned long)(ceil((num_X_moves*param[0][2])11NCHES_PER_STEP)),

X_ptr, 10);
sprintf(XcmdRev, "%s%s %sA %f %sV%f %s%s%s %s%s%c '%s%s", X_AXIS,

MOTOR_RESOLUTION, X_AXIS, param[0][4], X_AXIS, param[0][3],
X_AXIS, DISTANCE, X_ptr, X_ AXIS, DIR_DEF, XdirRev, X_AXIS, GO);

#ifdef DEBUG
printf("\n\n(Xmax- Xmin)/INCHES_PER_STEP = %f\n",

(Xmax- Xmin)IINCHES_PER_STEP);

www.manaraa.com

119

printf("\n\nafter casting to a long, it= %ld\n",
(long)((Xmax- Xmin)IINCHES_PER_STEP));

printf("While X_ptr = %s\n", X_ptr);
#end if

WriteCmd(XcmdRev);
if (wait_for_mover()!=O)
{

}

printf("***ERROR: timeout occurred in wait_for_mover!!\n");
printf("**"'Doing extra tomo scan, no data to save!!!\n");

WriteCmd(thetaCmdRev);
if (wait_for_mover()!=O)
{

}

printf("***ERROR: timeout occurred in wait_for_mover!!\n");
printf("**"'Doing extra tomo scan, no data to save!!!\n");

write_l D _to_file();

strcpy(fileName, tempFile);
ans = 2; I"'"'* set global scan type back to tomo scan ***I
rot_flag =TRUE;

} 1*--- end of one_tomo_scan function ----------*I

I"' Function: acq_data *I
1"'-- This function starts and stops the data acqusition then reads --*I
1*-- dual port memory on the mea board itself and returns the data -*I
1*-- result to the calling function. The photon count returned -*I
1*-- is either the sum of all the requested channel's photon counts -"'I
1"'-- or the multiple energy bin photon counts if multiple energy -*I
1*-- bins are desired. *I
unsigned long acq_data()
{

unsigned long temp_photon_mt = 0,
live_time_count = 0,
real_time_count = 0,
far *channel_ptr; I"'"'* pointer to dual port memory ***I

register in t j, k;

int mca=DA T AMCB,
segment=Ol,
result,
comm_err = 0;

www.manaraa.com

unsigned long real_temp=OL, live_temp=OL;

float realtime=O.O,
livetime=O.O;

char cmd5tring[80],
resp[512],
per_resp[512];

realtime = 0.0;
livetime = count_ time;

120

real_temp =(unsigned long)(realtime/20*1000);
live_temp =(unsigned long)(livetime/20*1000);

sprintf(cmdString, "clear");
if (mbxio(cmdString, resp, per_resp) == -1)
{

}

printf("ERROR: the command string clear returned an error!\n");
printf("resp = %s, per_resp = %s\n", resp, per_resp);
printf("cmdString = %s\n", cmdString);
exit(l);

sprintf(cmdString, "set_live_preset %lu", live_ temp);
if (mbxio(cmdString, resp, per_resp) == -1)
(

}

printf("ERROR: the command string set_live returned an error!\n");
printf("resp = %s, per_resp = %s\n", resp, per_resp);
printf("cmdString= %s \n" ,cmdString);
exit(l);

#ifdef DEBUG
sprintf(cmdString, "show _live_preset");
if (mbxio(cmdString, resp, per_resp) == -1)
{

}

printf("ERROR: command string show_live_preset returned an error!\n");
printf("resp = %s, per_resp = %s\n", resp, per_resp);
printf("cmdString = %s \n", cmdString);
exit(l);

printf("show_live_preset resp = %s\n", resp);

sprintf(cmdString, "show _live");
if (mbxio(cmdString, resp, per_resp) == -1)
(

printf("ERROR: the command string show _live returned an error!\n");
printf("resp = %s, per_resp = %s\n", resp, per_resp);

www.manaraa.com

}

printf("cmdString = %s\n", cmdString);
exit(l);

#end if

sprintf(cmdString, "start");
if (mbxio(cmdString, resp, per_resp) == -1)
{

121

printf("ERROR: the command start returned an error!\n");
printf("resp = %s, per_resp = %s\n", resp, per_resp);
printf("cmdString = %s\n", cmdString);
exit(l); ·

}

sprintf(cmdSbing, "show _active");
do
{

#ifdef DEBUG
sprintf(cmdString, "show _live");
if (mbxio(cmdString, resp, per_resp) == -1}
{

}

printf("ERROR: the command string show _live returned an error!\n");
printf("resp = %s, per_resp = %s\n", resp, per_resp);
printf("cmdSbing = %s \n", cmdString);
exit(1);

printf("show _live resp = %s \n", resp);
sprintf(cmdString, "show _active");

#end if
if (mbxio(cmdString, resp, per_resp) == -1)
{

}

printf("ERROR: the command string show_active failed!\n");
printf("resp = %s, per_resp = %s\n", resp, per_resp);
printf("cmdSbing = %s \n", cmdString);
exit(1);

#ifdef DEBUG
printf('•show _active resp = %s \n .. , resp);
printf('1n the do loop waiting for mea bd. to go inactive!!\n ..);

#end if
} while (strnicmp(resp, "$COOOOO .. , 7) != 0);

sprintf(cmdString, .. stop ..);
if (mbxio(cmdString, resp, per_resp) == -1)
{

}

printf("ERROR: the command stop returned an error!\n");
printf("resp = %s, per_resp = %s\n .. , resp, per_resp);
printf("cmdString = %s \n", cmdString);
exit(1);

www.manaraa.com

channel_ptr =(unsigned long far "')BASEADD;

I"'"'"' (void)outport(Ox292, DATAMCB-1); "'**I

if (mult_bins_flag)
{

for (k=O; k<num_bins;k++)
{

122

for (j=ene_bins[k][O];j<ene_bins[k][l]; j++)
temp_photon_cnt +=(MASK & "'(channel_ptr + j));

bin_data[k][num_points] = temp _photon_cnt;

}

if (temp_photon_cnt < eLimits[k][O])
eLimits[k][O] = temp_photon_cnt;

if (temp_photon_cnt > eLimits[k][l])
eLimits(k][l] = temp_photon_cnt;

temp_photon_cnt = 0;

}
else
{

for (j=beg_chan; j<=end_chan; j++)
{

temp_photon_cnt +=(MASK & "'(channel_ptr + j));
#ifdef DEBUG I

printf("current photon count= % 12lu, ",
(MASK & *(channel_ptr + j)));

printf("count = % 10lu, pointer= %lu \n", temp_photon_cnt,
(channel_ptr + j));

#end if
}

} 1••• end of else ,..,.,.. I

return temp_photon_cnt;

} 1•------ end of acq_data ----·---*I

1,.,.,.,.,.,.,.,.,..,..,..,.,.,.,.,.,..,..,..,.,.,.,..,..,.,.,.,.,..,.,.,.,..,..,..,.,..,..,.,..,..,..,.,.,.,.,.,.,.,.,.,.,.,..,.,.,.,..,.,..,..,..,.,..,..,..,..,..,..1

1••• Function mbxio: This function sends a command to the mailbox ***I
1••• and requests its response. ***I
1,..,.,..,.,..,..,..,..,..,..,..,..,.,.,..,..,..,..,..,.,..,..,..,..,..,..,.,.,..,..,..,.,..,..,.,.,.,.,.,.,.,.,..,.,.,..,..,..,.,..,..,..,.,..,.,..,.,..,.,..,..,..,.,.,. .. ,.,..,.1

int mbxio(command, response, per_response)

char •command, I* Command to send to 916 *I
•response, I* Response from 9l6, if any "'I
•per_response; I* Percent response from 916 *I

www.manaraa.com

extern char "'get_resp(void);

int counter, I"' General loop counter"' I
errflg; I"' Timeout error flag "'I

123

time_t start_ time, I"' Used to calculate timeout"' I
present_ time;

errflg = -1; I"' Init as error until we are successful"' I
"'mcb_outlenlo = '\0'; I"' Send a zero length message to sync mailbox"' I
"'mcb_outlenhi = '\0';
"'mcb _outflg = TRUED;

"'mcb_inflg = FALSED;
start_ time= time(NULL);
present_time = time(NULL);
while(("'mcb_outflg == '\377)&&(difftime(present_time, start_time)<S.O))
{

*mcb _inflg = F ALSED;
present_ time= time(NULL);

}
if (difftime(present_time, start_ time) >= 5.0)
(

}

printf("MCB not responding!!!\n");
printf("command = %s\n", command);
retum(errflg);

I* Put command in output buffer"' I
for (counter= 0; counter< strlen(command); counter++)

*(mcb_outbuf + (4 • counter))= *(command+ counter);

I* Write out length of command *I
*mcb_outlenlo = (char)(strlen(command)% 256);
*mcb_outlenhi = (char)(strlen(command) I 256);

I* Set the out flag to say the command is ready • I
*mcb_outflg =TRUED;

I* Get the first response record • I
strcpy(per _response, get_resp());
if (strcmpi(per_response, "err")== 0)

retum(errflg);

I"' See if it was a percent repsonse • I
if (strncmp(per_response, "%", 1) == 0)
(

strnset(response, '\0', 1);
errflg = 0; I* Good return • I
retum(errflg);

www.manaraa.com

I* It wasn't a percent response, so copy it and *I
I* go get the percent response • I

strcpy(response, per _response);
strcpy(per_response, get_resp());
if (strcmpi(per_response, "err")== 0)

retum(errflg);

errflg = 0; I* Good return "'I
retum(errflg);

124

I*** I
I* Function get_resp This function gets the response from the MCA ,.,.,. I
I , , , , , , .. , , , I
char "'get_resp()
{

char resp_buf[512];

int counter,
num_chars;

time_t start_time,
present_ time;

I* Wait for MCB response *I
start_ time= time(NULL);
present_ time= time(NULL);
while ((*mcb _inflg==F ALSED)&&(difftime(present_time, start_ time) < 5.0))

present_time = time(NULL);
if (difftime(present_time, start_ time) >= 5.0)
{

}

printf("MCB not responding!!\n");
strcpy(resp_buf, "err");
retum(resp_buO;

I* Get number of characters in response and read "'I
num_chars = (int)*mcb_inlenlo + 256 • (int)*mcb_inlenhi;
memset(resp_buf, '\0', 512);
for (counter = 0; counter < num_chars; counter++)

resp_buf[counter] = *(mcb_inbuf + (4 *counter));

I* Reset input buffer flag and return response address"' I
*mcb_inflg = FALSED;
return(resp _buO;

www.manaraa.com

125

/*---*I
/*--------------------Function: sendString ----------------------*I
I*---* I
/*** This function sends a command string to DOS. ***I
void sendString(cmdString, callString)
char * cmdString;
char cal1String[15];
(

int result;

if ((result= system(cmdString)) == -1)
(

}

printf("ERROR: reported on the call to %s\n", callString);
if (ermo == ENOMEM) printf("No memory available!\n");
if (erma == ENOEXEC) printf("Not executable file!\n");
if (erma == ENOENT) printf("Either path or file not found!\n");
if (erma == EINV AL) printf("Modeflag is invalid!\n");
if (errno == E2BIG) printf("See manual\n");
exit(O);

} /*** end of sendString ***I

/* -----*/
/* Function: allocate_ Temp *I
/*--This function allocates memory for the 2-d array called Data Temp-* I
/* */
void allocate_ TempO
(

register int i;

int mx=O,
my=O;

if ((ans == 3) && (Zflag))
my = num_Z_moves + 1;

else
my = num_X_moves + 1;

if (ans == 2)
mx = num_theta_steps + 1;

if (ans == 4)
mx = num_Z_moves + 1;

if (ans != 3)
(

if ((DataTemp=(unsigned long huge **)malloc((unsigned long)mx *
sizeof(unsigned long huge •))) ==NULL)

www.manaraa.com

126

printf("malloc called with mx = %d and sizeof long huge"'= %d\n",
mx, sizeof(long huge "'));

printf("Allocation of mem for the x dim. of Data Temp failed!\n");
exit(O);

for (i=O; i<mx; i++)
{

}

if ((DataTemp[i)=(unsigned long huge "')malloc((unsigned long)my"'
sizeof(unsigned long)))== NULL)

else
{

. {

printf("malloc called with my= %d and sizeof long= %d\n",
my, sizeof(long));

printf("Allocation of mem for they dim. of Data Temp failed!\n");
freeMem();
exit(O);

if ((Data Temp = (unsigned long huge "'"')malloc((unsigned long)l "'
sizeof(unsigned long huge"'))) == NULL)

{
printf("malloc called with my= %d and sizeof long huge"'= %d\n",

my, sizeof(long huge"'));
printf("Allocation of mem for the x dim. of Data Temp failed!\n");
exit(O);

if ((DataTemp[O]=(unsigned long huge *)malloc((unsigned l9ng)my *
sizeof(unsigned long)))== NULL)

{
printf("malloc called with my = %d and sizeof long = %d \n",

my, sizeof(long));
printf("Allocation of mem for single dim. of Data Temp failed!\n");
freeMem();
exit(O);

} 1•------- end of allocate_Temp ------·*I

I• *I
1• Function: freeMem() *I
1• Frees up the memory allocated by allocateTempO *I
I* *I .
void freeMem()
{

www.manaraa.com

register int i;

int mx=O,
my=O;

mx = num_X_moves + 1;

if (ans == 3) free(DataTemp[O]);
else
{

for (i=O; i<=mx; i++)
free(Data Temp[i]);

free(DataTemp);

127

} 1*------------ end freeMem() -------·----*I

1*-------· -------------------~*1
1*------ Function: write_2D_to_file *I
I* write the 2-d array called Data Temp to file: nameFile ----*I
I* *I
void write_2D _to_file()
{

register int i,j;
int endfor;

FILE *outfile;

window(45,15,79,24);
gotoxy(l, 1);

for (i=O;i<lO;i++)
{

cprintf("
}

\r\n");

if ((outfile = fopen(fileName, "w")) == NULL)
{

outfile = fopen("outsave.grd", "w");
printf("fopen of output file %s failed!!\n", fileName);

}

if (ans == 2)
{

find_limits(ans, num_theta_steps, num_X_moves);
fprintf(outfile, "DSAA \n%d %d\n", num_X_moves, num_theta_steps);

www.manaraa.com

128

fprintf(outfile, "%f %f\n%f %f\n", fabs(param[O)[O]), fabs(param[O][l]),
(fabs(parain(3][0])IDEGREES_PER_RADIAN),
(fabs(param[3)[1])IDEGREES_PER_RADIAN));

fprintf(outfile, "%lu %lu\n", Min, Max);
endfor = num_theta_steps;

}
else if (ans == 4)
{

}

find_limits(ans, num_Z_moves, num_X_moves);
fprintf(outfile, "DSAA \n%d %d \n", num_X_moves, num_Z_moves);
fprintf(outfile, "%f %f\n%f %f\n", fabs(param[O][O]), fabs(param[O][l]),

fabs(param[2][0]), fabs(param[2][1]));
fprintf(outfile, "%lu %lu \n", Min, Max);
endfor = num_Z_moves;

for (i=O; i<=endfor; i++)
{

for (j=O; j<=num_X_moves; j++)
{

fprintf(outfile, "% 121u", DataTemp[i][j]);
}
fprintf(outfile, "\n");

fclose(outfile);

freeMem();

window(10,20,79,24);
_ gotoxy(l,l);
textcolor(LIGHTGRA Y);
textbackground(BLUE);

cprintf("\n \n \n \n \n \nWrote data to file: %s\n", fileName);

} 1*------ end of write_2D_to_file ------• I

I* --*1
lrt: Function: write_ tO _to_file • I
1"'---- write the 1-d array called Data Temp to file: fileName --• I
I* *I .
void write_l D _to _file()
{

register int i,
end for;

float delta Val;

www.manaraa.com

FILE *outfile;

window(45, 15,44,24);
gotoxy(l, 1);
for (i=O;i<10;i++)
{

cprintf("
}

\r\n");

if ((outfile = fopen(fileN~me, "w")) == NULL)
{

outfile = fopen("outsave.dat", "w");

129

printf("fopen of output file %s failed!!\n", fileName);
}

find_limits(ans, num_Z_moves, num_X_moves);

if (rot_flag)
{

}

delta Val= param[3][2];
endfor = num_theta_steps;

else if (Zflag)
{

}

delta Val = param[2][2];
endfor = num_Z_moves;

else
{

}

delta Val= param[0][2];
endfor = num_X_moves;

for (i=O; i<=endfor; i++)
{

fprintf(outfile, "%10f %10lu\n", (i • ~eltaVal), DataTemp[O)[i});
}

fprintf(outfile, "\n");

fdose(outfile);

freeMem();

window(l 0,20,44,24);
gotoxy(l,l);
textcolor(LIGHTGRA Y);
textbackground(BLUE);

www.manaraa.com

130

cprintf("\n \n \n \n \n \nWrote data to file: %s\n", fileName);

} /*----------------end of write_lD_to_file ----------------*I

1*------------------------------ ---*I
1*------------ Function: find _limits-------------* I
1*---- find the min. and max photon counts in Data Temp---------* I
1*---- ------------- -*I
void find_limits(mode, endfori, endforj)
int mode;
register int endfori;
register int endforj;
{

register int i,
j;

if (mode == 3)
(

if (rot_flag)
endforj = num_theta_steps;

else if (Zflag)
endforj = num_Z_moves;

else
endforj = num_X_moves;

for (j=O; j<=endforj; j++)
{

}

if (DataTemp[O][j] < Min)
Min= DataTemp[O][j];

if (DataTemp[O][j] > Max)
Max= DataTemp[O][j];

} I*** end of if mode == 3 ***I
else
{

for 0=0; i<endfori; i++)
{

for (j=O; j<=endforj; j++)
{

}
}

if (DataTemp[i][j] <Min)
Min= DataTemp[i][j];

if (DataTemp[i][j] > Max)
Max = DataTemp[i][j];

} I*** end of else ***I

www.manaraa.com

131

} I*------------------ end of find_limits -------------------------*I

I*************************************** ,.,.,.,. .. ,. ,.,.,.,. .. ,.,. ,.,. I
I*** This function polls all three axis on the PC23 to report the current,.,.,. I
!*** axis position, which is done only after each axis is with any moves ***I
/*** in progress. This is a slick/ crude method of determining when all ,.,.,. I
/*** positioning is finished. ***I
int wait_for_mover(void)
{
char x_temp[SO];
chary _temp[SO];
char z_temp[SO];

WriteCmd("1P\r");
if (ReadAnswer(x_temp)!=O)

return(-1);
WriteCmd("2P\r");
if (ReadAnswer(y _temp)!=O)

return(-1);
WriteCmd("3P\r");
if (ReadAnswer(z_temp)!=O)

return(-1);
return(O);

}

I*===
*I

/*** Function make_good_filname: This function adds an extension to ***I
!*** the DOS filename pointed to by ptr. The extension added is passed ,.,.,. I
/*** to this function as well. ,.,.,. I
void make_good_filename(ptr,extension)
char *ptr, *extension;
{
char *dot_ptr;

}

/*Find out if there is a'.' in the filename already* I
dot_ptr = strchr(ptr,'.');
/* If not, find end of string *I
if (dot_ptr == NULL)

for(dot_ptr = ptr;*dot_ptr != '\O';dot_ptr++);
else

return;
/* No extension, so put the extension on the end of this string *I
*dot_ptr = '\0';
strcat(ptr,extension);

I*===* I

www.manaraa.com

132

I*** This function clears the keyboard type-ahead buffer prior to reading ,.,.,. I
I*** a single character from the keyboard. The keyboard input routine is ,.,.,. I
I*** interrupt Ox21, function Ox08 which waits for a key to be entered. ,.,.,. I
I*** Return value: int the character entered ,.,.,. I

int clrkbd(void)
{

union REGS ireg;

ireg.h.ah = OxOc;
ireg.h.al = Ox08;
intdos(&ireg, &ireg);

return ireg.h.al;
}

I* Function 12 *I
I* Prepare for function 8

I*,. Function: getint() ,.,.,. I

*I

I*** This function accepts input from the keyboard to form an integer ,.,.,. I
I*** number. When the input is entered, the value is converted to a long I
I*** integer and checked against the symbolic constants as defined in the I
I*** (ANSI) limits.h header file. If the value entered does not fall ,. I
I*** within the limits as defined in the header file, an error condition ,.,.,. I
I*** is returned. ,.,.,. I
I*** Argument list: int *ptr a pointer to the integer that will I
I*** hold the integer value on success I
I*** Return value: int 0 on error, 1 if successful I
int getint(int *ptr)
{

}

char buff[10];
long tempint;

gets(buff);
tempint = atol(buff);
if ((tempint >(long) INT_MAX) I I (tempint < INT_MIN)) {

*ptr = 0;
return 0;

} else {

}

*ptr = (int) tempint;
return 1;

I*** This function accepts input from the keyboard to form an unisgned I
l***lo~g number. I
I*** Argument list unsigned long •ptr a pointer to the ulong that I
I*** will hold the ulong value on success ,. I
I,. .. Return value: int 0 on error, 1 if successful ,.,.,. I
int getulong(unsigned long •ptr)

www.manaraa.com

{

133

char buff[20];
unsigned long templong;

gets(bufO;
templong =(unsigned long)atol(buff);
if ((templong >(unsigned long) ULONG_MAX))
(

}

"'ptr = OL;
return 0;

else
(

"'ptr = templong;
return 1;

}
}

I"'"'"' This function accepts input from the keyboard to form a floating "'"'"'I
I"'"'"' pointg number. "'"'"'I
I"'"'"' Argument list: float "'ptr a pointer to the float that "'"""I
I"'""" will hold the float value on success "'"'*I
I~"'"' Return value: int 0 on error, 1 if successful "'"'*I
int getfloat(float "'ptr)
(

}

char buff[40];
double tempfloat;

gets(buff);
tempfloat = atof(buff);
if ((tempfloat > (double)(1.0E20)) I I (tempfloat < (double)O.O))
.(

}

"'ptr = 0.0;
return 0;

else
(

}

"'ptr = (float) tempfloat;
return 1;

I"'"'"' Function: newkbhit() "'"'"'I
I"'"'"' This function reads a character from the keyboard-if one.is ready-"'"'"' I
I"'"'"' using interrupt Ox21. If not, the function returns zero. If a char "'"'"'I
I""""' is read, it is not echoed to the screen. If an extended key code is "'"""I
I""""' read the value returned is the scan code plus Ox100. If an ASCII "'"'"'I
I"'"'"' Return value: int 0 - no key pressed "'"'"'I
I"'"'"' 1 < c < 128 - ASCII character "'"'"'I
I"'"'"' c > 256 - Extended key code "'"'"'I

www.manaraa.com

134

int newkbhit(void)
(.

int zflag;
union REGS ireg;

ireg.h.ah = Ox06; I* Function 6 *I
ireg.h.dl = Oxff; I* We want to read it, not output *I
zflag = intdos(&ireg, &ireg);

if ((zflag & ZERO FLAG) == 0) (I* A character?
if (ireg.h.al == 0) (I* Extended keycode?

ireg.h.ah = Ox06;
ireg.h.dl = Oxff;
intdos(&ireg, &ireg);
return (ireg.h.al + OxlOO);

}

*I

return ireg.h.al; I* An ASCII character *I
}

return 0; I* No character *I

*I

I*** Function name: insure_legal_file_name ***I
I*** This function just does a trial file open on the file name ***I
/*** contained in the global fileName char string. It gives the ***I
I*** user additional chances to type in a legal DOS file name ***I
I*** so that when the data acquisition is finished, we are assured ***I
I*** that the data will be stored off into a file before the ***I
I*** program terminates and the data is lost!!! ***I
void insure_legal_file_name(void)
{

FILE *testfile;

do
{
if ((testfile = fopen(fileName, "w")) ==NULL)
{

}

printf(''*************""""*"" WARNING WARNING ****""**********\n");
printf("fopen of output file %s failed!!\n", fileName);
printf("There are probably some illegal chars. in the \n");
printf("output file name-Please re-enter the file \n");
printf("name now so that no data will be lost !!! ===>");
gets(fileName);

} while (testfile == NULL);

fclose(testfile);

} I*** insure_legal_file_name ***I

www.manaraa.com

135

I*** Function: input_ energy _bins Uses global array ene_bins[][] ***I
I*** and global variables slope and intercept (which define the ***I
I*** calibration curve for the mea. Gives the user the chance to ***I
I*** change the default values for the slope and intercept. This ***I
I*** function then prompts the user for the number of energy bins he ***I
I*** or she wishes to specify as well as for the starting and ending ***I
I*** energy values for each of these bins. ***I
void input_ energy _bins(void)
{

register int i, j;

char answer[3];

mult_bins_flag = TRUE;

window(2,20,44,24);
gotoxy(l,l);
textcolor(BLACK);
textbackground(WHITE);

for 0=0; i <MAX_ BINS; i ++)
{

}

eLimits[i](O] = ULONG_MAX;
eLimits[i][l] = 0;

cprintf("\nDo you wish to change the default");
cprintf(" calibration slope = %f and", slope);
cprintf(" intercept = %f ? Enter y or n for ");
cprintf("yes or no==>", intercept);
gets(answer);
if (strnonpi(answer, "y\0", 1) == 0)
{

}

cprintf(''Please enter the new slope and intercept ==> ");
scanf("%f %f", &slope, &intercept);

do
{

cprintf('How many energy bins do you wish");
cprintf(" to specify? ==> ");
scanf("%d", &num_bins);
cprintf("\n");

} while(num_bins> 10);

for (i=O; i<num_bins; i++)
{

cprintf("Enter the beginning and ending");
cprintf(" energies for bin #%d ==>", i+1);
scanf("%d %d", &ene_bins[i](O], &ene_bins[i][l]);

www.manaraa.com

}

136

I"'"'* Convert these energies to channel numbers using the current,.,.,. I
I"'** calibration slope and intercept for the mea. ,.,.,. I
ene_bins[i](O] = (int)((ene_bins[i][01- intercept) I slope);
ene_bins[i][l 1 = (int)((ene_bins[i][l 1 - intercept) I slope);

} I""""* End of input_ energy _bins,.,.,. I

www.manaraa.com

137

MOVERF.C MODULE LISTING

I"'------------ PC23 CONTROL ------------------"'I
I"' This module contains low level control routines for the *I
I* PC23 board. Each function contained here was adapted from the *I
I"' Pascal source code in the PC23 instruction manual. They are: *I
I* "'I
I"' Initialize(board) (reset the PC23) *I
I"' WriteChar(board, char) (write a char to PC23) *I
I"' WriteCmd(board,string) (write string to PC23) *I
I"' ReadChar(board) (read a PC23 character) *I
I"' ReadAnswer(address,string) (read a PC23 ans. string) "'I
I"' *I
I"' This module should be included in any C program needing "'I
I* to control the PC23. *I
I"' *I
I"'--------------------------"' I

#include <stdio.h>
#include <conio.h>
#include <dos.h>
#include <time.h>
#include "mover.h"

I"' INITIALIZE "'I
I"' *I
I"' Initialize the PC23 residing at the address 'board'. A return *I
I"' value of -1 indicates an error resulted and the program should stop.* I
I"' "'I
/"' *I
int Initialize(void) .
/"'*"' struct Board_struct *board; "'*"'I
(

int count=O;
unsigned char status_byte;

board->Control = board->base + 1;
board->Status = board->base + 1;
board->Command = board->base;
board-> Data = board->base;
outportb((short) board->Control,STOP);

do
status_byte = inportb((short)board->Status);

while((status_byte & FAIL_ MASK) ==·0);

www.manaraa.com

outportb((short)~ard->Control,CB);

outportb((short)board->Control,ST ART);

do
{

status_byte = inportb((short)board->Status);
count++;
delay(l.O);

138

} while(((status_byte & START_MASK) !=RESTART) && (count< MAXINT));

if (count == MAXINT)
return(ERROR_ CONDITION);

outportb((short) board->Control,INTCLR);
for(count=O;count<MAXINT;count++); 1,.. delay for a bit,.. I

outportb((short)board->Control,CONTROL_BYTE);

retum(lOO);
} I* End of Initialize ,. I

I* - - WRITE CHAR ---- ,.. I
I* *I
I* This function writes a single character to the PC23 board. ,.. I
I* *I
I* *I
void WriteChar(alpha)
I*** struct Board_struct *board; ,.,.,. I
char alpha;
(

unsigned char status_byte;

do
status_byte = inportb((short)board->Status);

while((status_byte & IDB_MASK) == 0);
outportb((short)board->Command,alpha);
outportb((short)board->Control,IDB);
do

status_byte = inportb((short)board->Status);
while ((status_byte & IDB_MASK) != 0);
outportb((short)board->Control,CB);
do

status_byte = inportb((short)board->Status);
while ((status_byte & IDB_MASK) == 0);

www.manaraa.com

139

} I* End of WriteChar() *I

I* ------------------ WRITECMD --------------------- *I
I* *I
I* This function writes a string of characters to the PC23 board. *I
I* It is dependent on the WriteChar function. *I
I* *I
I* ------*I
void WriteCmd(cmd)
lu* struct Board_struct *board; .,..,..,. I
char *cmd;
(

int i;

WriteChar(32);
for(i=O;*(cmd + i) != O;i++)

WriteChar(*(cmd + i));
WriteChar(13);

} I* End ofWriteCmd() *I

I*--- - READCHAR *I
I* *I
I* This function reads a character in from the PC23 and returns it *I
I* as the value of the function. *I
I* *I
I* ----*1
char Read Char(void)
I*** struct Board_struct *board; .,..,..,. I
(
unsigned char status_byte,retum_byte=O;
time_t start_ time, I* Used to calculate timeout* I

present_ time;

status_byte = inportb((short)board->Status);
if ((status_byte & ODB_MASK) != 0)
{

start_ time= time(NULL);
present_time = time(NULL);
do
(

status_byte = inportb((short)board->Status);
present_ time= time(NULL);

} while(((status_byte & ODB_MASK)==O) &&
(difftime(present_time,start_time)<30.0));

if (difftime(present_time, start_time)>=30.0)

www.manaraa.com

140

retum(-1};
retum_byte = inportb((short)board->Data);

}

outportb((short)board->Control,ACK);
start_ time = time(NULL);
present_time = time(NULL);
do
{

status_byte = inportb((short)board->Status);
present_ time= time(NULL);

} while(((status_byte & ODB_MASK)!=O)&&
(difftime(present_time, start_time)<30.0));

if (difftime(present_time, start_time)>=30.0)
retum(-1);

outportb((short)board->Control,CB);

retum(retum_byte);
} I* End of Read Char() *I

I* READ ANSWER *I
I* *I
I* This function reads a string of characters from the PC23. It *I
I* relies on Read Char() for this. *I
I* *I
I* *I
int ReadAnswer(answer_string)
I*,.. struct Board_struct *board; ***I
char *answer _string;
{
unsigned char status_byte,ascii;
char *ptr = answer _string;
time_t start_ time, I* Used to calculate timeout* I

present_ time;

status_byte = inportb((short)board->Status);
if (status_byte & ODB_MASK != 0)
{

start_time = time(NULL);
present_ time= time(NULL);
do
{

}

ascii= ReadCharO;
if (ascii != 0)

*(ptr++) =ascii;
if (ascii == -1)

printf("**~~-**** ERROR: Read Char time out!!!! ******\n");
present_ time= time(NULL);

www.manaraa.com

}

141

while((ascii != 13)&&(difftime(present_time, start_time)<300.0));
if (difftime(present_time, start_time)>=300.0)

retum(-1);
*ptr = 0;

return(O);
} /* End of Read Answer() *I

www.manaraa.com

142

Moverf.c module listing:

I*------------------ PC23 CONTROL -----------------------*I
I* This module contains low level control routines for the *I
I* PC23 board. Each function contained here was adapted from the *I
I* Pascal source code in the PC23 instruction manual. They are: *I
I* *I
I* Initialize(board) (reset the PC23) *I
I* WriteChar(board, char) (write a char to PC23) *I
I* WriteCmd(board,string) (write string to PC23) *I
I* ReadChar(board) (read a PC23 character) *I
I* ReadAnswer(address,string) (read a PC23 ans. string) *I
I* *I
I* This module should be included in any C program needing *I
I* to control the PC23. *I
I* *I
I* -----*I

#include <stdio.h>
#include <conio.h>
#include <dos.h>
#include <time.h>
#include "mover.h"

I* INITIALIZE *I
I* *I
I* Initialize the PC23 residing at the address 'board'. A return *I
I* value of -1 indicates an error resulted and the program should stop.* I
I* *I
I* *I
int Initialize(void).
I*** struct Board_struct *board; ***I
(

int count=O;
unsigned char status_byte;

board->Control = board->base + 1;
board->Status = board->base + 1;
board->Command = board->base;
board-> Data = board->base;
outportb((short) board->Control,STOP);

do ·
status_byte = inportb((short)board->Status);

while((status_byte & FAIL_ MASK) == 0);

www.manaraa.com

outportb((short)board->Control,CB);
outportb((short)board->Control,ST ART);

do
{

status_byte = inportb((short)board->Status);
count++;
delay(l.O);

143

} while(((status_byte & START_MASK) !=RESTART) && (count< MAXINT));

if (count == MAXINT)
return(ERROR_ CONDITION);

outportb((short) board->Control,INTCLR);
for(count=O;count<MAXINT;count++); I* delay for a bit* I

outportb((short)board->Control,CONTROL_BYfE);

retum(lOO);
} /* End of Initialize *I

I* WRITECHAR *I
I* *I
I* This function writes a single character to the PC23 board. *I
I* *I
I* *I
void WriteChar(alpha)
I*** struct Board_struct *board; ***I
char alpha;
{

unsigned char status_byte;

do
status_byte = inportb((short)board->Status);

while((status_byte & IDB_MASK) == 0);
outportb((short)board->Command,alpha);
outportb((short)board->Control,IDB);
do

status_byte = inportb((short)board->Status);
while ((status_byte & IDB_MASK) != 0);
outportb((short)board ->Control,CB);
qo

status_byte = inportb((short)board->Status);
while ((status_byte & IDB_MASK) == 0);

www.manaraa.com

144

} I* End of WriteChar() • I

I*---------------- WRITECMD ------------------------*I
I* *I
I* This function writes a string of characters to the PC23 board. *I
I* It is dependent on the WriteChar function. *I
I* *I
I* *I
void WriteCmd(cmd)
1••• struct Board_struct *board; ***I
char *cmd;
(

int i;

WriteChar(32);
for(i=O;*(cmd + i) != O;i++)

WriteChar(*(cmd + i));
WriteChar(13);

} I"' End ofWriteCmd() "'/

I"' REAOCHAR *I
I"' "'I
I"' This function reads a character in from the PC23 and returns it *I
I* as the value of the function. *I
I"' "'I
I"' ----*1
char Read Char(void)
1••• struct Board_struct "'board; ,.,.,. I
{
unsigned char status_byte,retum_byte=O;
time_t start_ time, I"' Used to calculate timeout • I

present_ time;

status_byte = inportb((short)board->Status);
if ((status_byte & ODB_MASK) != 0)
{

start_time = time(NULL);
present_ time = time(NULL);
do
{

status_byte = inportb((short)board->Status);
present_time = time(NULL);

} while(((status_byte & ODB_MASK)==O) &&
(difftime(present_time,start_time)<30.0));

if (difftime(present_time, start_time)>=30.0)

www.manaraa.com

145

retum(-1);
retum_byte = inportb((short)board->Data);

}

outportb((short)board->Control,ACK);
start_time = time(NULL);
present_time = time(NULL);
do
{

status_byte = inportb((short)board->Status);
present_ time= time(NULL);

} while(((status_byte & ODB_MASK)!=O)&&
(difftime(present_time, start_time)<30.0));

if (difftime(present_time, start_time)>=30.0)
retum(-1);

outportb((short)board->Control,CB);

retum(retum_byte);
} I., End ofReadCharO .,I

I.,---------- READ ANSWER -------------.,.I
I., .,I
I., This function reads a string of characters from the PC23. It .,. I
I., relies on Read Char() for this. .,. I
I., .,I
I., .,I
int Read Answer(answer _string)
I.,.,., struct Board_struct .,board; .,..,..,. I
char .,answer _sbing;
{
unsigned char status_byte,ascii;
char .,ptr = answer _string;
time_t start_ time, I., Used to calculate timeout.,. I

present_ time;

status_byte = inportb((short)board->Status);
if (status_byte & ODB_MASK != 0)
{

start_ time= time(NULL);
present_time = time(NULL);
do
{

}

ascii= ReadCharO;
if (ascii!= 0)

.,(ptr++) =ascii;
if (ascii == -1)

printf(".,.,.,.,.,.,., ERROR: ReadChar time out!!!! .,.,.,.,.,.,,n");
present_ time= time(NULL);

www.manaraa.com

}

146

while((ascii != 13)&&(difftime(present_time, start_time)<300.0));
if (difftime(present_time, start_time)>=300.0)

return(-1);
*ptr = 0;

return(O);
} /* End of ReadAnswer() *I

www.manaraa.com

147

APPENDIX E. HEADER FILES.

acq.h header file:

I* Header File - acq.h *I
I* Header File for X-Ray User Interface Program *I

I* Peter Jeong and Rick Powell *I
I* 0110911991 *I
I* CNDE, ISU ,. I

#define TRUE 1
#define FALSE 0
#define MAX_ BINS 10 I*** NOTE: if this value is increased, you may ,....,. I

I*** need to increase the number of file buffers*** I
I*** in the config.sys file and reboot. ,.,.,. I

#define POINTS_PER_WRITE 50 I*** number of scan points before write*** I
#define DEAD_TIME_PER_ACQ 3.0160.0 I* 3.0 sec dead time I 60 sees per min* I
#define INCHES_PER_STEP 0.00001
#define DEGREES_PER_STEP 0.0001
#define DEGREES_PER_RADIAN 57.295828
#define X_AXIS "2\0"
#define Z_AXIS "1 \0"
#define THET A_AXIS "3 \0"
#define VEL_DEFAULT "V2\0"
#define ACCEL_DEFAULT "A0.2\0"
#define MOTOR_RESOLUTION "MR20\0"
#define DISTANCE "D\0"
#define DIR_DEF "H\0"
#define GO "G \0"
#define BASEADD OxDOOOOOOOL
#define MASK OxOOFFFFFFL
#define BEGCHAN 250 I*** default beginning channel number ***I
#define ENDCHAN 1950 I*** default ending channel number ,..,.,. I
#define MAXCHAN 2047
#define DATAMCB 2
#define PC23BASE Ox330
#define REAL_ TIME_ADJUST 0.1
#define ZEROFLAG Ox40
#define OUTFLG OxD0000003L I* Segment:Offset 0000:0003 message flag *I
#define TEST OxDOOOOOF3L I* Segment:Offset OOOO:OOF3 test to mea *I
#define OUTLENLO OxD000003BL I* Segment:Offset 0000:0038 mess. to mea *I
#define OUTLENHI OxD000003FL I* SegmentOffset D000:003F mess. length *I
#define OUTBUF OxD0000043L I* Segment:Offset 0000:0043 m. from mea *I
#define. INFLG OxD00007C3L I* Segment:Offset D000:07C3 mess. length *I
#define INLENLO OxD00007FBL I* Segment:Offset 0000:07FB message flag *I
#define INLENHI OxD00007FFL I* Segment:Offset 0000:07FF message flag *I
#define INBUF OxD0000803L /* Segment:Offset 0000:0803 input buffer • I
#define TRUED '\377'

www.manaraa.com

#define FALSED '\0'

#define L_ARRO 75
#define R_ARRO 77
#define U _ARRO 72
#define D _ARRO 80
#define INSERT 82
#define DEL 83
#define ESC 27
#define ENTER 13

I* FUNCTION PROTOTYPES *I

I* Format.c *I

extern void top_pad(void);
extern void Multy _1(int, int, int, int);
extern void MltPad_l(int, int, int, int);
extern void Multy _2(int, int, int, int);
extern void MltPad_2(int, int, int, int);
extern void Single(int, int, int);
extern void SinglPad(int, int, int);
extern void Scr_l(int, int, int);
extern void ScrPad_l(int, int, int);
extern void Scr_2(int, int, int);
extern void ScrPad_2(int, int, int);

I* level_la.c *I

extern void disp_l(void);
extern void word_la(int, int, int);
extern void word_lb(int, int, int, int);
extern void dot(void);

I* level_2a.c *I

I* level_2b.c *I

extern void act_2b(void);
extern void disp_2b(void);
extern void word_2bl(int, int);
extern void word_2b2(int, int, int);

I* level_2c.c *I

extern void act_2c(void);
extern void disp_2c(void);
extern void word_2cl(int, int);
extern void word_2c2(int, int, int);

148

www.manaraa.com

I* level_2d.c • I

extern void act_2d(void);
extern void disp_2d(void);
extern void word_2dl(int, int);
extern void word_2d2(int, int, int);

I* level_2e.c *I

extern void act_2e(void);
extern void disp_2e(void);
extern void word_2e1(int,.int);
extern void word_2e2(int, int, int);

I* level_3a.c *I

extern void act_3a(void);
extern void disp_3a(void);
extern void word_3a1(int, int);
extern void word_3a2(int, int, int);

I* level_3b.c *I

extern void act_3bl(void);
extern void act_3b2(void);
extern void act_3b3(void);

I* level_3c.c *I

extern void act_3cl(void);
extern void act_3c2(void);
extern void act_3c3(void);

I* leve1_3d.c *I

extern void act_3dl(void);
extern void act_3d2(void);
extern void act_3d3(void);
extern void act_3d4(void);
extern void disp_3d4(void);
extern void word_3d4a(int, int);
extern void word_3d4b(int, int, int);
extern void act_4d4(void);
extern void act_3d5(void);

I* level_3e.c *I

extern void act_3el(void);
extern void act_3e2(void);
extern void act_3e3(void);

149

www.manaraa.com

I* level_ 4a.c *I

extern void act_ 4a(void);
extern void disp_4a(void);
extern void disp_4b(void);
extern void word_ 4aa(void);
extern void word_ 4ab(int, int, int, int);
extern void word_ 4ac(int, int, int, int);
extern void reset(void);

I* level_ 4b.c *I

extern void act_4b(void);
extern void disp_4b(void);
extern void disp_4b(void);
extern void word_4ba(void);
extern void word_ 4bb(int, int, int, int);
extern void word_4bc(int, int, int, int);

I* GLOBAL VARIABLES *I

I* acqray.c *I

I* format.c *I

extern void *buff_wl;
extern void *buff_pl;
extern void *buff_w2;
extern void *buff_p2;
extern void *buff_ w3;
extern void *buff_p3;
extern void *buff_ w4;
extern void *buff_p4;
extern unsigned buff_size;

I* set-up *I

extern int dotpos[8](5];
extern float param[8][5];

I* xl_srt, xl_end, xl_inc, xl_ vel, xl_acl
yl_srt, yl_end, yl_inc, yl_ vel, yl_acl
zl_srt, zl_end, zl_inc, zl_ vel, zl_acl
tl_srt, tl_end, tl_inc, tl_ vel, tl_acl
pl_srt, pl_end, pl_inc, pl_ vel, pl_acl

150

www.manaraa.com

x2_srt, x2_end, x2_inc, x2_ vel, x2_acl
y2_srt, y2_end, y2_inc, y2_ vel, y2_acl
t2_srt, t2_end, t2_inc, t2_ vel, t2_acl "'I

I"' raster-ld "'I

extern int rld_disp;
extern float rld_ctime;

I"' raster-2d "'I

extern int r2d_disp;
extern float r2d_ctime;

I"' tomography "'I

extern float tomo_ctime;
extern float tomo_thd;
extern int tomo_engy;
extern int tomo_disp;

I"' MFB*I

extern int micro_disp;
extern float micro_ctime;

I* Other Variables* I

extern int _wscroll;
extern int directvideo;

extern int code;
extern int xbox,xtemp;
extern int sbox,stemp;
extern int tbox,ttemp;
extern int fbox,ftemp;
extern int gbox,gtemp;
extern int pbox,ptemp;
extern int kbox,ktemp;

extern int left_2b,top_2b;
extern int left_2c,top_2c;
extern int left_2d,top_2d;
extern int left_2e,top_2e;

extern int left_3a,top_3a;

extern int left_3bl,top_3b1;
extern int left_3b2,top_3b2;
extern int left_3b3,top_3b3;

151

www.manaraa.com

extern int left_3cl,top_3c1;
extern int left_3c2,top_3c2;
extern int left_3c3,top_3c3;

extern int left_3dl,top_3d1;
extern int left_3d2,top_3d2;
extern int left_3d3,top_3d3;
extern int left_3d4,top_3d4;
extern int left_3d5,top_3d5;
extern int left_4d4,top_4d4;

extern int left_3el,top_3e1;
extern int left_3e2,top_3e2;
extern int left_3e3,top_3e3;

extern int left_4a,top_4a;
extern int left_4b,top_4b;

;• 4th level ,. I

extern int d_srt;
extern int d_end;
extern int ch_srt;
extern int ch_end;

1• ARRAYS•!

;•tst level,. I

extern char •itemla[8];
extern char •itemlb[ll];
extern char •iteml<;[ll];
extern char •itemld[12];
extern char •itemle[5];
extern char •itemlf[7];
extern char •itemlg[6];
extern char ••listl [7];
extern int light1[7];
extern int num1[7];
extern int pos1[7](2];

1• 2nd level ,. I

extern char •item2a(9]; 1• Set-up,. I
extern char •item2b[6); ;• Raster-tO,. I
extern char •item2c[6]; ;• Raster-20,. I
extern char •item2d[8]; ;• Tomography Scan ,. I

152

extern char •item2e[6]; 1• MFB (Micro-Focused Beam Scan) ,. I

www.manaraa.com

extern char **list2[5];
extern int npts2[5];

I* 3rd level *I

extern char rld[81];
extern char r2d[81];
extern char tomo[81];
extern char *engy[3];
extern char *chan[3];
extern char mfb[81];
extern int axis_status[4][8];

I* 4th level *I

extern char *item4a[9];

153

www.manaraa.com

154

rriover.h header file:

I* File: mover.h; Header file for PC23 indexer board *I
/*Contains numerous definitions for the indexer board* I
#include <math.h>

#define byte unsigned char
#define F AIL_MASK Ox20 /* Board Failure mask used to read SBS *I
#define START _MASK Ox7F /* Recovery mask used to test for PC23 recovery *I
#define INTCLR Ox20 /*Control Byte clears the interrupt output latch* I
#define REST ART Ox17 /*Used to verify presence/recovery *I
#define STOP Ox64 /* Control byte used to stop timer, set CB2 *I
#define START Ox40 /*Control byte used to restart, clear CBS *I
#define CONTROL_ BYTE Ox60 /* Normal control byte, bits 5 and 6 set *I
#define IDB_MASK Ox10 /*Mask used to read SB4 *I
#define lOB Ox70 I* Control byte used to set CB4 *I
#define CB Ox60 /* Normal control byte config .. bits 5 & 6 set *I
#define ODB_MASK Ox08 /*Mask used to read CB3 *I
#define ACK OxEO /* Control byte used to set CB7 *I
#define ERROR_ CONDITION (int)(-1) /*Indicates an error condition *I
#define MAXINT 32767
#ifndef NULL

#define NULL 0
#end if
#define DISPLAY_WIDTH 80 /*Width of display screen in characters *I

#define CURSOR_ UP Ox48
#define CURSOR_ DOWN OxSO
#define CURSOR_ LEFT Ox4b
#define CURSOR_RIGHT Ox4d
#define PAGE_ UP 73
#define HOME 71
#define END 79
#define P AGE_DOWN 81
#define DELETE 83
#define Fl_KEY 59
#define F2_KEY 60
#define F3_KEY 61
#define F4_KEY 62
#define FS_KEY 63
#define F6_KEY 64
#define F7 _KEY 65
#define FB_KEY 66
#define F9 _KEY 67
#define F10_KEY 68
#define BACKSPACE 8

#define NORMAL "\x1 B[Om"

www.manaraa.com

#define BOLD "\x1B[1m"
#define UNDER "\xl B[4m"
#define REVERSE "\x1 B[7m"
#define CLS printf("%c(2J",ESC);
#define SPACE 32
#define CR 13
#define POS_CURSOR "\xlB["

struct Board_struct {
long base;
long Command;
long Control;
long Status;
long Data;
} ;

extern struct Board_struct *board;

char *report_pos(struct Board_struct *,short);
int Initialize(void);
int get_ key();
char ReadChar(void);
void WriteCmd(char *);
int ReadAnswer(char *);

155

	1991
	Computed tomography: experimental data acquisition and parallelization of reconstruction algorithm
	Richard K. Powell
	Recommended Citation

	Computed tomography: Experimental data acquisition and parallelization of reconstruction algorithm

